Xintong Yao, Dong Zhang, Yupeng Liu, Yanzhao Chen, Dafeng Zhang, Junchang Liu, Xue-Yang Ji, Hengshuai Li, Peiqing Cai, Xipeng Pu
{"title":"One stone, three birds: up-conversion, photothermal and p-n heterojunction to boost BiOBr:Yb3+,Er3+/Cu3Mo2O9 full spectrum photodegradation","authors":"Xintong Yao, Dong Zhang, Yupeng Liu, Yanzhao Chen, Dafeng Zhang, Junchang Liu, Xue-Yang Ji, Hengshuai Li, Peiqing Cai, Xipeng Pu","doi":"10.1007/s11705-024-2469-2","DOIUrl":null,"url":null,"abstract":"<div><p>Broadening spectral response range to realize the full spectrum photocatalysis is crucial to develop photocatalysts with satisfactory light-energy conversion ability. A full-spectrum driven p-n heterojunction photocatalytic system was rationally designed through introducing the Er<sup>3+</sup>/Yb<sup>3+</sup> co-doped BiOBr with up-conversion effect as the collector of near infrared light and photocatalysts substrate. Meanwhile, Cu<sub>3</sub>Mo<sub>2</sub>O<sub>9</sub> with the photothermal effect as a heat source to accelerate the reaction at the surface through absorbing the near infrared light. The photocatalytic activity of BiOBr:Yb<sup>3+</sup>,Er<sup>3+</sup>/Cu<sub>3</sub>Mo<sub>2</sub>O<sub>9</sub> composite was markedly strengthened under visible and near infrared light irradiation, and the BiOBr:Yb<sup>3+</sup>,Er<sup>3+</sup>/Cu<sub>3</sub>Mo<sub>2</sub>O<sub>9</sub>-5 composite displayed the optimal photodegradation activities for 0.03372 min<sup>−1</sup> and 0.058 h<sup>−1</sup>, being 2.3-folds and 2.4-folds than that of pure BiOBr:Yb<sup>3+</sup>,Er<sup>3+</sup> under the visible and near infrared light, respectively. The position of doped ions (Yb<sup>3+</sup> and Er<sup>3+</sup>) in BiOBr:Yb<sup>3+</sup>,Er<sup>3+</sup> was determined from the X-ray absorption fine structure spectra. And the reasonable mechanism of p-n heterojunction was proposed base on the results of experimental and density functional theory calculation. This work provides a rational strategy for the design and development of full-spectrum heterojunction photocatalysts with the up-conversion and photothermal effects to increase the photocatalytic performance.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"18 10","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Chemical Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11705-024-2469-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Broadening spectral response range to realize the full spectrum photocatalysis is crucial to develop photocatalysts with satisfactory light-energy conversion ability. A full-spectrum driven p-n heterojunction photocatalytic system was rationally designed through introducing the Er3+/Yb3+ co-doped BiOBr with up-conversion effect as the collector of near infrared light and photocatalysts substrate. Meanwhile, Cu3Mo2O9 with the photothermal effect as a heat source to accelerate the reaction at the surface through absorbing the near infrared light. The photocatalytic activity of BiOBr:Yb3+,Er3+/Cu3Mo2O9 composite was markedly strengthened under visible and near infrared light irradiation, and the BiOBr:Yb3+,Er3+/Cu3Mo2O9-5 composite displayed the optimal photodegradation activities for 0.03372 min−1 and 0.058 h−1, being 2.3-folds and 2.4-folds than that of pure BiOBr:Yb3+,Er3+ under the visible and near infrared light, respectively. The position of doped ions (Yb3+ and Er3+) in BiOBr:Yb3+,Er3+ was determined from the X-ray absorption fine structure spectra. And the reasonable mechanism of p-n heterojunction was proposed base on the results of experimental and density functional theory calculation. This work provides a rational strategy for the design and development of full-spectrum heterojunction photocatalysts with the up-conversion and photothermal effects to increase the photocatalytic performance.
期刊介绍:
Frontiers of Chemical Science and Engineering presents the latest developments in chemical science and engineering, emphasizing emerging and multidisciplinary fields and international trends in research and development. The journal promotes communication and exchange between scientists all over the world. The contents include original reviews, research papers and short communications. Coverage includes catalysis and reaction engineering, clean energy, functional material, nanotechnology and nanoscience, biomaterials and biotechnology, particle technology and multiphase processing, separation science and technology, sustainable technologies and green processing.