Interactive experimental study on microgroove structure and drag-reducing additives in rotating disk apparatus

IF 1.4 4区 工程技术 Q3 ENGINEERING, CHEMICAL
Ailian Chang, Le Huang, Benqing Huang, Kambiz Vafai
{"title":"Interactive experimental study on microgroove structure and drag-reducing additives in rotating disk apparatus","authors":"Ailian Chang,&nbsp;Le Huang,&nbsp;Benqing Huang,&nbsp;Kambiz Vafai","doi":"10.1002/apj.3112","DOIUrl":null,"url":null,"abstract":"<p>A series of interactive experiments are conducted to analyze the drag reduction technology with a rotating disk apparatus that combines microgroove structure and drag-reducing additives including polyethylene oxide (PEO), cetyltrimethyl ammonium chloride (CTAC), and sodium salicylate (NaSal). By varying the disk type, concentration of drag-reducing additives, temperature, and Reynolds number (<i>Re</i>), the corresponding drag reduction rates are obtained effectively. The experimental results indicate that adding CTAC strengthens the heat degradation and shear resistance of PEO; while PEO can enhance the ability of CTAC to form micellar structures and balance energy distribution at low concentrations. Moreover, the synergistic effect of these two additives presents a better drag reduction performance with a maximum drag reduction rate of 24.1%; while the microgroove structure enhances the effect of active drag reduction. Therefore, the combination of active and passive drag reduction technology broadens the application of energy saving and consumption reduction in hydraulic rotating machinery.</p>","PeriodicalId":49237,"journal":{"name":"Asia-Pacific Journal of Chemical Engineering","volume":"19 5","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/apj.3112","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A series of interactive experiments are conducted to analyze the drag reduction technology with a rotating disk apparatus that combines microgroove structure and drag-reducing additives including polyethylene oxide (PEO), cetyltrimethyl ammonium chloride (CTAC), and sodium salicylate (NaSal). By varying the disk type, concentration of drag-reducing additives, temperature, and Reynolds number (Re), the corresponding drag reduction rates are obtained effectively. The experimental results indicate that adding CTAC strengthens the heat degradation and shear resistance of PEO; while PEO can enhance the ability of CTAC to form micellar structures and balance energy distribution at low concentrations. Moreover, the synergistic effect of these two additives presents a better drag reduction performance with a maximum drag reduction rate of 24.1%; while the microgroove structure enhances the effect of active drag reduction. Therefore, the combination of active and passive drag reduction technology broadens the application of energy saving and consumption reduction in hydraulic rotating machinery.

旋转盘装置中的微槽结构与减阻添加剂的互动实验研究
通过一系列交互式实验,分析了结合微槽结构和减阻添加剂(包括聚氧化乙烯(PEO)、十六烷基三甲基氯化铵(CTAC)和水杨酸钠(NaSal))的旋转盘装置的减阻技术。通过改变圆盘类型、减阻添加剂浓度、温度和雷诺数(Re),可有效获得相应的减阻率。实验结果表明,添加 CTAC 可增强 PEO 的热降解和抗剪切能力;而 PEO 可增强 CTAC 在低浓度下形成胶束结构和平衡能量分布的能力。此外,这两种添加剂的协同作用还能带来更好的减阻性能,最大减阻率可达 24.1%;而微槽结构则增强了主动减阻的效果。因此,主动和被动减阻技术的结合拓宽了液压旋转机械节能降耗的应用领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
11.10%
发文量
111
期刊介绍: Asia-Pacific Journal of Chemical Engineering is aimed at capturing current developments and initiatives in chemical engineering related and specialised areas. Publishing six issues each year, the journal showcases innovative technological developments, providing an opportunity for technology transfer and collaboration. Asia-Pacific Journal of Chemical Engineering will focus particular attention on the key areas of: Process Application (separation, polymer, catalysis, nanotechnology, electrochemistry, nuclear technology); Energy and Environmental Technology (materials for energy storage and conversion, coal gasification, gas liquefaction, air pollution control, water treatment, waste utilization and management, nuclear waste remediation); and Biochemical Engineering (including targeted drug delivery applications).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信