Enhanced Flexoelectricity in Barium Titanate-Cellulose Composite Thin Films

IF 2 3区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Wensi Xing, Hongyu Cao, Xin Zhang, Xu Liang, Jianwei Song, Shengping Shen
{"title":"Enhanced Flexoelectricity in Barium Titanate-Cellulose Composite Thin Films","authors":"Wensi Xing,&nbsp;Hongyu Cao,&nbsp;Xin Zhang,&nbsp;Xu Liang,&nbsp;Jianwei Song,&nbsp;Shengping Shen","doi":"10.1007/s10338-024-00493-5","DOIUrl":null,"url":null,"abstract":"<div><p>Biopolymers, the potential flexoelectric materials, are environment-friendly, degradable, lightweight, cost-effective, and possess remarkable processing properties catering to the requirements of advanced devices. However, the flexoelectric coefficient of biopolymers is normally much weaker than that of ceramic materials, limiting their potential applications for designing high-performance green electromechanical coupling devices. To improve the flexoelectric response in biopolymers, we composited barium titanate (BTO) with 2,2,6,6-tetramethylpiperidine-1-oxyl -oxidized cellulose nanofibrils (TOCNF) to enhance the flexoelectric response of TOCNF. Owing to the high permittivity and flexoelectric effect of BTO, the relative dielectric constant and flexoelectric coefficient of 33.3 wt% BTO-TOCNF films reached 30.94 @ 1 kHz and 50.05 ± 1.88 nC/m @ 1 Hz, which were almost 172 times and 27 times higher than those of TOCNF, respectively. The composite thin film contains high dielectric constant and flexoelectric coefficient, as well as excellent flexibility. Our study provided a straightforward and efficient method for improving the flexoelectric effect of biopolymers, and demonstrated its great potential applications in flexoelectric-based devices.</p></div>","PeriodicalId":50892,"journal":{"name":"Acta Mechanica Solida Sinica","volume":"37 4","pages":"521 - 527"},"PeriodicalIF":2.0000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica Solida Sinica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10338-024-00493-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Biopolymers, the potential flexoelectric materials, are environment-friendly, degradable, lightweight, cost-effective, and possess remarkable processing properties catering to the requirements of advanced devices. However, the flexoelectric coefficient of biopolymers is normally much weaker than that of ceramic materials, limiting their potential applications for designing high-performance green electromechanical coupling devices. To improve the flexoelectric response in biopolymers, we composited barium titanate (BTO) with 2,2,6,6-tetramethylpiperidine-1-oxyl -oxidized cellulose nanofibrils (TOCNF) to enhance the flexoelectric response of TOCNF. Owing to the high permittivity and flexoelectric effect of BTO, the relative dielectric constant and flexoelectric coefficient of 33.3 wt% BTO-TOCNF films reached 30.94 @ 1 kHz and 50.05 ± 1.88 nC/m @ 1 Hz, which were almost 172 times and 27 times higher than those of TOCNF, respectively. The composite thin film contains high dielectric constant and flexoelectric coefficient, as well as excellent flexibility. Our study provided a straightforward and efficient method for improving the flexoelectric effect of biopolymers, and demonstrated its great potential applications in flexoelectric-based devices.

Abstract Image

增强钛酸钡-纤维素复合薄膜的柔电性能
生物聚合物是一种潜在的挠电材料,具有环境友好、可降解、重量轻、成本低等特点,并具有显著的加工性能,可满足先进设备的要求。然而,生物聚合物的挠电系数通常比陶瓷材料的挠电系数弱得多,这限制了它们在设计高性能绿色机电耦合器件方面的潜在应用。为了改善生物聚合物的挠电响应,我们将钛酸钡(BTO)与 2,2,6,6- 四甲基哌啶-1-氧代氧化纤维素纳米纤维(TOCNF)复合,以增强 TOCNF 的挠电响应。由于 BTO 的高介电常数和挠电效应,33.3 wt% BTO-TOCNF 薄膜的相对介电常数和挠电系数分别达到 30.94 @ 1 kHz 和 50.05 ± 1.88 nC/m @ 1 Hz,分别是 TOCNF 的近 172 倍和 27 倍。复合薄膜具有较高的介电常数和柔电系数,以及优异的柔韧性。我们的研究为改善生物聚合物的挠电效应提供了一种简单有效的方法,并证明了其在基于挠电的器件中的巨大应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Mechanica Solida Sinica
Acta Mechanica Solida Sinica 物理-材料科学:综合
CiteScore
3.80
自引率
9.10%
发文量
1088
审稿时长
9 months
期刊介绍: Acta Mechanica Solida Sinica aims to become the best journal of solid mechanics in China and a worldwide well-known one in the field of mechanics, by providing original, perspective and even breakthrough theories and methods for the research on solid mechanics. The Journal is devoted to the publication of research papers in English in all fields of solid-state mechanics and its related disciplines in science, technology and engineering, with a balanced coverage on analytical, experimental, numerical and applied investigations. Articles, Short Communications, Discussions on previously published papers, and invitation-based Reviews are published bimonthly. The maximum length of an article is 30 pages, including equations, figures and tables
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信