Chengying Bai, Kankan Zheng, Bin Wang, Bozhi Li, Gaohui Sun, Xinyu Li, Xiaodong Wang, Yingjie Qiao, Paolo Colombo
{"title":"Facile construction of porous epoxy resin/geopolymer composites using red mud and slag by well-distributed dual-blending","authors":"Chengying Bai, Kankan Zheng, Bin Wang, Bozhi Li, Gaohui Sun, Xinyu Li, Xiaodong Wang, Yingjie Qiao, Paolo Colombo","doi":"10.1111/ijac.14833","DOIUrl":null,"url":null,"abstract":"<p>Porous geopolymer composite (E51) reinforced by E51 epoxy resin was prepared by well-distributed dual-blending using red mud, metakaolin, and slag as raw materials. The effects of E51 content on microstructure, porosity, mechanical properties, and thermal insulation properties of the porous composites were investigated. The addition of E51 changed the setting time and viscosity of the slurry with high content of solid wastes (80%), which play an important role in the formation of pores during the direct foaming process. The addition of E51 had great influence on the porous properties of geopolymer composites, which in turn affected their compressive strength (0.19–1.44 MPa) and thermal conductivity (0.09–0.12 W/mK). The addition of E51 enabled the production of geopolymer composites in a rather large range of total porosity (67.3–81.1 vol%), with an optimal sample possessing a total porosity of up to 78.7 vol%, a thermal conductivity of 0.086 W/mK, and a compression strength of 0.47 MPa.</p>","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":"21 6","pages":"3967-3980"},"PeriodicalIF":1.8000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ijac.14833","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Ceramic Technology","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ijac.14833","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Porous geopolymer composite (E51) reinforced by E51 epoxy resin was prepared by well-distributed dual-blending using red mud, metakaolin, and slag as raw materials. The effects of E51 content on microstructure, porosity, mechanical properties, and thermal insulation properties of the porous composites were investigated. The addition of E51 changed the setting time and viscosity of the slurry with high content of solid wastes (80%), which play an important role in the formation of pores during the direct foaming process. The addition of E51 had great influence on the porous properties of geopolymer composites, which in turn affected their compressive strength (0.19–1.44 MPa) and thermal conductivity (0.09–0.12 W/mK). The addition of E51 enabled the production of geopolymer composites in a rather large range of total porosity (67.3–81.1 vol%), with an optimal sample possessing a total porosity of up to 78.7 vol%, a thermal conductivity of 0.086 W/mK, and a compression strength of 0.47 MPa.
期刊介绍:
The International Journal of Applied Ceramic Technology publishes cutting edge applied research and development work focused on commercialization of engineered ceramics, products and processes. The publication also explores the barriers to commercialization, design and testing, environmental health issues, international standardization activities, databases, and cost models. Designed to get high quality information to end-users quickly, the peer process is led by an editorial board of experts from industry, government, and universities. Each issue focuses on a high-interest, high-impact topic plus includes a range of papers detailing applications of ceramics. Papers on all aspects of applied ceramics are welcome including those in the following areas:
Nanotechnology applications;
Ceramic Armor;
Ceramic and Technology for Energy Applications (e.g., Fuel Cells, Batteries, Solar, Thermoelectric, and HT Superconductors);
Ceramic Matrix Composites;
Functional Materials;
Thermal and Environmental Barrier Coatings;
Bioceramic Applications;
Green Manufacturing;
Ceramic Processing;
Glass Technology;
Fiber optics;
Ceramics in Environmental Applications;
Ceramics in Electronic, Photonic and Magnetic Applications;