Additive manufacturing of short fiber oxide ceramic matrix composite: Process analysis and material properties

IF 1.8 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS
Jonas H. M. Stiller, Daisy Nestler, Stefan Uhlmann, Martin Kausch, Gaston Rauchs, Lothar Kroll
{"title":"Additive manufacturing of short fiber oxide ceramic matrix composite: Process analysis and material properties","authors":"Jonas H. M. Stiller,&nbsp;Daisy Nestler,&nbsp;Stefan Uhlmann,&nbsp;Martin Kausch,&nbsp;Gaston Rauchs,&nbsp;Lothar Kroll","doi":"10.1111/ijac.14842","DOIUrl":null,"url":null,"abstract":"<p>This work investigates the material extrusion-based additive manufacturing (AM) process chain of a pure alumina-based oxide ceramic matrix composite, starting from material selection, large-scale compounding to pellets, the AM process itself, debinding and sintering as well as microstructural and mechanical characterization. The compounded pellets have a volume share of 50% binder (polyvinyl butyral [PVB], polyethylene glycol [PEG], and stearic acid) and 50% alumina (Al<sub>2</sub>O<sub>3</sub>, alumina powder, and Nextel 610 alumina fibers) with an aimed fiber volume share of 40% after sintering. The material is compounded on an industrial scale with approximately 10 kg/h and the material extrusion-based AM process reaches speeds of up to 1000 mm/s. A variation of the feed rate leads to a significant increase in surface roughness and an increase in mass of 30%, in thickness of 12% and in width of 25%. The flexural behavior in the four-point-bending test can be described by a fast first peak and reaching higher flexural strength after the first crack subsequent with averages of 23.8 ± 3.6 MPa below .1% elongation. The fracture surfaces show the expected failure mechanisms like pull-out and crack deflection. The resulting fiber length in the printed samples is 140 µm in average.</p>","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":"21 6","pages":"3863-3875"},"PeriodicalIF":1.8000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ijac.14842","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Ceramic Technology","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ijac.14842","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

This work investigates the material extrusion-based additive manufacturing (AM) process chain of a pure alumina-based oxide ceramic matrix composite, starting from material selection, large-scale compounding to pellets, the AM process itself, debinding and sintering as well as microstructural and mechanical characterization. The compounded pellets have a volume share of 50% binder (polyvinyl butyral [PVB], polyethylene glycol [PEG], and stearic acid) and 50% alumina (Al2O3, alumina powder, and Nextel 610 alumina fibers) with an aimed fiber volume share of 40% after sintering. The material is compounded on an industrial scale with approximately 10 kg/h and the material extrusion-based AM process reaches speeds of up to 1000 mm/s. A variation of the feed rate leads to a significant increase in surface roughness and an increase in mass of 30%, in thickness of 12% and in width of 25%. The flexural behavior in the four-point-bending test can be described by a fast first peak and reaching higher flexural strength after the first crack subsequent with averages of 23.8 ± 3.6 MPa below .1% elongation. The fracture surfaces show the expected failure mechanisms like pull-out and crack deflection. The resulting fiber length in the printed samples is 140 µm in average.

Abstract Image

短纤维氧化物陶瓷基复合材料的增材制造:工艺分析与材料特性
这项工作研究了纯氧化铝基氧化物陶瓷基复合材料的基于材料挤压的增材制造(AM)工艺链,从材料选择、大规模复合到颗粒、AM 工艺本身、脱模和烧结以及微观结构和机械表征。复合颗粒中粘合剂(聚乙烯醇缩丁醛[PVB]、聚乙二醇[PEG]和硬脂酸)和氧化铝(Al2O3、氧化铝粉末和 Nextel 610 氧化铝纤维)各占 50%,烧结后纤维体积占 40%。这种材料在工业规模上的混合速度约为 10 公斤/小时,基于材料挤压的 AM 工艺速度可达 1000 毫米/秒。进料速度的变化导致表面粗糙度显著增加,质量增加 30%,厚度增加 12%,宽度增加 25%。四点弯曲试验中的抗弯行为可以用快速达到第一个峰值来描述,并在随后出现第一条裂纹后达到更高的抗弯强度,平均值为 23.8 ± 3.6 兆帕,低于.1%的伸长率。断裂面显示了预期的破坏机制,如拉出和裂纹偏转。印刷样品中的纤维长度平均为 140 微米。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Applied Ceramic Technology
International Journal of Applied Ceramic Technology 工程技术-材料科学:硅酸盐
CiteScore
3.90
自引率
9.50%
发文量
280
审稿时长
4.5 months
期刊介绍: The International Journal of Applied Ceramic Technology publishes cutting edge applied research and development work focused on commercialization of engineered ceramics, products and processes. The publication also explores the barriers to commercialization, design and testing, environmental health issues, international standardization activities, databases, and cost models. Designed to get high quality information to end-users quickly, the peer process is led by an editorial board of experts from industry, government, and universities. Each issue focuses on a high-interest, high-impact topic plus includes a range of papers detailing applications of ceramics. Papers on all aspects of applied ceramics are welcome including those in the following areas: Nanotechnology applications; Ceramic Armor; Ceramic and Technology for Energy Applications (e.g., Fuel Cells, Batteries, Solar, Thermoelectric, and HT Superconductors); Ceramic Matrix Composites; Functional Materials; Thermal and Environmental Barrier Coatings; Bioceramic Applications; Green Manufacturing; Ceramic Processing; Glass Technology; Fiber optics; Ceramics in Environmental Applications; Ceramics in Electronic, Photonic and Magnetic Applications;
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信