Junwei Li, Wenxue Lu, Dan Yang, Yanzhen Jia, Haobo Su, Jialing Deng, Zuo Gong, Yongke Zhao
{"title":"A Novel Rare Earth Enhanced Epoxy Composites: Mechanical Properties, Thermal Stability and Curing Kinetics","authors":"Junwei Li, Wenxue Lu, Dan Yang, Yanzhen Jia, Haobo Su, Jialing Deng, Zuo Gong, Yongke Zhao","doi":"10.1134/S1560090424600529","DOIUrl":null,"url":null,"abstract":"<p>The curing kinetics of the epoxy resin/nano rare earth oxides system were studied by non-isothermal differential scanning calorimetry. Curing reaction occurred with DSC thermal analyzers at heating rates of 5, 10, 15, and 20 K/min, respectively. Data on enthalpy changes during heating were collected. The kinetic parameters and curing temperature of the curing reaction of the epoxy resin/ nano rare earth oxides system were calculated by Kissinger–Ozawa, Crane method and T-β extrapolation method. The results showed that the rare earth compounds reduced the activation energy of the epoxy resin curing reaction, but did not change the curing mechanism of the epoxy resin. Studies on the influence of sample fracture morphology showed that the introduction of nano rare earth compounds plays an important role in improving the tensile properties of nanocomposites. When the 1% weight component of nano Gd<sub>2</sub>O<sub>3</sub> was added to the composite, the tensile strength of the composite increased by 65.18%, the flexural strength and modulus increased by 57.92 and 70.04%, respectively, and the glass transition temperature increased by 17.55°C.</p>","PeriodicalId":739,"journal":{"name":"Polymer Science, Series B","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Science, Series B","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1134/S1560090424600529","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The curing kinetics of the epoxy resin/nano rare earth oxides system were studied by non-isothermal differential scanning calorimetry. Curing reaction occurred with DSC thermal analyzers at heating rates of 5, 10, 15, and 20 K/min, respectively. Data on enthalpy changes during heating were collected. The kinetic parameters and curing temperature of the curing reaction of the epoxy resin/ nano rare earth oxides system were calculated by Kissinger–Ozawa, Crane method and T-β extrapolation method. The results showed that the rare earth compounds reduced the activation energy of the epoxy resin curing reaction, but did not change the curing mechanism of the epoxy resin. Studies on the influence of sample fracture morphology showed that the introduction of nano rare earth compounds plays an important role in improving the tensile properties of nanocomposites. When the 1% weight component of nano Gd2O3 was added to the composite, the tensile strength of the composite increased by 65.18%, the flexural strength and modulus increased by 57.92 and 70.04%, respectively, and the glass transition temperature increased by 17.55°C.
期刊介绍:
Polymer Science, Series B is a journal published in collaboration with the Russian Academy of Sciences. Series B experimental and theoretical papers and reviews dealing with the synthesis, kinetics, catalysis, and chemical transformations of macromolecules, supramolecular structures, and polymer matrix-based composites (6 issues a year). All journal series present original papers and reviews covering all fundamental aspects of macromolecular science. Contributions should be of marked novelty and interest for a broad readership. Articles may be written in English or Russian regardless of country and nationality of authors. All manuscripts are peer reviewed