A frequency-domain approach for enhanced performance and task flexibility in finite-time ILC

IF 2.5 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Max van Haren , Kentaro Tsurumoto , Masahiro Mae , Lennart Blanken , Wataru Ohnishi , Tom Oomen
{"title":"A frequency-domain approach for enhanced performance and task flexibility in finite-time ILC","authors":"Max van Haren ,&nbsp;Kentaro Tsurumoto ,&nbsp;Masahiro Mae ,&nbsp;Lennart Blanken ,&nbsp;Wataru Ohnishi ,&nbsp;Tom Oomen","doi":"10.1016/j.ejcon.2024.101033","DOIUrl":null,"url":null,"abstract":"<div><div>Iterative learning control (ILC) techniques are capable of improving the tracking performance of control systems that repeatedly perform similar tasks by utilizing data from past iterations. The aim of this paper is to achieve both the task flexibility enabled by ILC with basis functions and the performance of frequency-domain ILC, with an intuitive design procedure. The cost function of norm-optimal ILC is determined that recovers frequency-domain ILC, and consequently, the feedforward signal is parameterized in terms of basis functions and frequency-domain ILC. The resulting method has the performance and design procedure of frequency-domain ILC and the task flexibility of basis functions ILC, and are complimentary to each other. Validation on a benchmark example confirms the capabilities of the framework.</div></div>","PeriodicalId":50489,"journal":{"name":"European Journal of Control","volume":"80 ","pages":"Article 101033"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0947358024000931","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Iterative learning control (ILC) techniques are capable of improving the tracking performance of control systems that repeatedly perform similar tasks by utilizing data from past iterations. The aim of this paper is to achieve both the task flexibility enabled by ILC with basis functions and the performance of frequency-domain ILC, with an intuitive design procedure. The cost function of norm-optimal ILC is determined that recovers frequency-domain ILC, and consequently, the feedforward signal is parameterized in terms of basis functions and frequency-domain ILC. The resulting method has the performance and design procedure of frequency-domain ILC and the task flexibility of basis functions ILC, and are complimentary to each other. Validation on a benchmark example confirms the capabilities of the framework.
在有限时间 ILC 中提高性能和任务灵活性的频域方法
迭代学习控制(ILC)技术能够利用过去迭代的数据,改善重复执行类似任务的控制系统的跟踪性能。本文的目的是通过直观的设计程序,实现基函数 ILC 的任务灵活性和频域 ILC 的性能。本文确定了能恢复频域 ILC 的规范最优 ILC 成本函数,并因此根据基函数和频域 ILC 对前馈信号进行了参数化。由此产生的方法既有频域 ILC 的性能和设计程序,又有基函数 ILC 的任务灵活性,两者相得益彰。在一个基准实例上的验证证实了该框架的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
European Journal of Control
European Journal of Control 工程技术-自动化与控制系统
CiteScore
5.80
自引率
5.90%
发文量
131
审稿时长
1 months
期刊介绍: The European Control Association (EUCA) has among its objectives to promote the development of the discipline. Apart from the European Control Conferences, the European Journal of Control is the Association''s main channel for the dissemination of important contributions in the field. The aim of the Journal is to publish high quality papers on the theory and practice of control and systems engineering. The scope of the Journal will be wide and cover all aspects of the discipline including methodologies, techniques and applications. Research in control and systems engineering is necessary to develop new concepts and tools which enhance our understanding and improve our ability to design and implement high performance control systems. Submitted papers should stress the practical motivations and relevance of their results. The design and implementation of a successful control system requires the use of a range of techniques: Modelling Robustness Analysis Identification Optimization Control Law Design Numerical analysis Fault Detection, and so on.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信