Data-driven reduced-order unknown-input observers

IF 2.5 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Giorgia Disarò, Maria Elena Valcher
{"title":"Data-driven reduced-order unknown-input observers","authors":"Giorgia Disarò,&nbsp;Maria Elena Valcher","doi":"10.1016/j.ejcon.2024.101034","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we propose a data-driven approach to the design of reduced-order unknown-input observers (rUIOs). We first recall the model-based solution, by assuming a problem set-up slightly different from those traditionally adopted in the literature, in order to be able to easily adapt it to the data-driven scenario. Necessary and sufficient conditions for the existence of a reduced-order unknown-input observer, whose matrices can be derived from a sufficiently rich set of collected historical data, are first derived and then proved to be equivalent to the ones obtained in the model-based framework. Finally, a numerical example is presented, to validate the effectiveness of the proposed scheme.</div></div>","PeriodicalId":50489,"journal":{"name":"European Journal of Control","volume":"80 ","pages":"Article 101034"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0947358024000943","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we propose a data-driven approach to the design of reduced-order unknown-input observers (rUIOs). We first recall the model-based solution, by assuming a problem set-up slightly different from those traditionally adopted in the literature, in order to be able to easily adapt it to the data-driven scenario. Necessary and sufficient conditions for the existence of a reduced-order unknown-input observer, whose matrices can be derived from a sufficiently rich set of collected historical data, are first derived and then proved to be equivalent to the ones obtained in the model-based framework. Finally, a numerical example is presented, to validate the effectiveness of the proposed scheme.
数据驱动的降序未知输入观测器
在本文中,我们提出了一种数据驱动的方法,用于设计降阶未知输入观测器(rUIOs)。我们首先回顾了基于模型的解决方案,假设问题设置与传统文献中采用的问题设置略有不同,以便能够轻松地将其调整为数据驱动型方案。首先推导出存在降序未知输入观测器的必要条件和充分条件,这些条件可以从收集到的足够丰富的历史数据中推导出矩阵,然后证明这些条件等同于在基于模型的框架中获得的条件。最后,介绍了一个数值示例,以验证所提方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
European Journal of Control
European Journal of Control 工程技术-自动化与控制系统
CiteScore
5.80
自引率
5.90%
发文量
131
审稿时长
1 months
期刊介绍: The European Control Association (EUCA) has among its objectives to promote the development of the discipline. Apart from the European Control Conferences, the European Journal of Control is the Association''s main channel for the dissemination of important contributions in the field. The aim of the Journal is to publish high quality papers on the theory and practice of control and systems engineering. The scope of the Journal will be wide and cover all aspects of the discipline including methodologies, techniques and applications. Research in control and systems engineering is necessary to develop new concepts and tools which enhance our understanding and improve our ability to design and implement high performance control systems. Submitted papers should stress the practical motivations and relevance of their results. The design and implementation of a successful control system requires the use of a range of techniques: Modelling Robustness Analysis Identification Optimization Control Law Design Numerical analysis Fault Detection, and so on.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信