Biocatalytic desymmetrization for synthesis of chiral enones using flavoenzymes

0 CHEMISTRY, MULTIDISCIPLINARY
Qing-Qing Zeng, Qian-Yi Zhou, Carla Calvó-Tusell, Shuang-Yu Dai, Xiang Zhao, Marc Garcia-Borràs, Zhen Liu
{"title":"Biocatalytic desymmetrization for synthesis of chiral enones using flavoenzymes","authors":"Qing-Qing Zeng, Qian-Yi Zhou, Carla Calvó-Tusell, Shuang-Yu Dai, Xiang Zhao, Marc Garcia-Borràs, Zhen Liu","doi":"10.1038/s44160-024-00596-4","DOIUrl":null,"url":null,"abstract":"Efficient methods for achieving desaturation of carbonyl compounds are highly sought after in organic chemistry. In contrast to synthetic approaches, enzymatic desaturation systems offer the potential to enhance sustainability and selectivity but have remained elusive. Here we report the development of an enzymatic desaturation system based on flavin-dependent ene-reductases for desymmetrizing cyclohexanones. This platform facilitates the synthesis of a wide array of chiral cyclohexenones bearing quaternary stereocentres—structural motifs commonly present in bioactive molecules—with excellent yields and enantioselectivities. Experimental and computational mechanistic studies reveal the roles of key active-site residues that enable the formation and stabilization of an enolate intermediate in the desaturation event. Additionally, by leveraging these insights, we have devised a biocatalytic strategy for the synthesis of enones by reductively desymmetrizing cyclohexadienones. This method yields the opposite enantiomer compared to our desaturation system, underscoring the enantiodivergence and broad applicability of our flavin-based desymmetrization approaches. Biocatalytic methods for the synthesis of chiral cyclohexenones bearing quaternary stereocentres through oxidation and reduction reactions are reported. Mechanistic studies reveal the role of active-site residues in the oxidation process and inform the development of the enzymatic reduction reaction.","PeriodicalId":74251,"journal":{"name":"Nature synthesis","volume":"3 11","pages":"1340-1348"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature synthesis","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44160-024-00596-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient methods for achieving desaturation of carbonyl compounds are highly sought after in organic chemistry. In contrast to synthetic approaches, enzymatic desaturation systems offer the potential to enhance sustainability and selectivity but have remained elusive. Here we report the development of an enzymatic desaturation system based on flavin-dependent ene-reductases for desymmetrizing cyclohexanones. This platform facilitates the synthesis of a wide array of chiral cyclohexenones bearing quaternary stereocentres—structural motifs commonly present in bioactive molecules—with excellent yields and enantioselectivities. Experimental and computational mechanistic studies reveal the roles of key active-site residues that enable the formation and stabilization of an enolate intermediate in the desaturation event. Additionally, by leveraging these insights, we have devised a biocatalytic strategy for the synthesis of enones by reductively desymmetrizing cyclohexadienones. This method yields the opposite enantiomer compared to our desaturation system, underscoring the enantiodivergence and broad applicability of our flavin-based desymmetrization approaches. Biocatalytic methods for the synthesis of chiral cyclohexenones bearing quaternary stereocentres through oxidation and reduction reactions are reported. Mechanistic studies reveal the role of active-site residues in the oxidation process and inform the development of the enzymatic reduction reaction.

Abstract Image

Abstract Image

利用黄酶类生物催化非对称性合成手性烯酮
实现羰基化合物脱饱和的高效方法是有机化学领域孜孜以求的。与合成方法相比,酶法去饱和体系具有提高可持续性和选择性的潜力,但一直难以实现。在此,我们报告了基于黄素依赖性烯还原酶的酶法去饱和系统的开发情况,该系统可用于环己酮的去对称化。这一平台有助于合成多种手性环己烯酮,这些环己烯酮带有生物活性分子中常见的四元立体中心结构基团,并具有极佳的产率和对映选择性。实验和计算机理研究揭示了关键活性位点残基在脱饱和过程中形成和稳定烯醇中间体的作用。此外,利用这些见解,我们设计了一种生物催化策略,通过还原性地使环己二烯酮脱对称来合成烯酮。与我们的去饱和体系相比,这种方法能得到相反的对映体,突出了我们基于黄素的去对称化方法的对映体差异性和广泛适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信