Refinement of the Pitzer–Debye–Hückel Equation for Single Asymmetric Aqueous Electrolyte Systems

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Cong-Yu Zhang
{"title":"Refinement of the Pitzer–Debye–Hückel Equation for Single Asymmetric Aqueous Electrolyte Systems","authors":"Cong-Yu Zhang","doi":"10.1007/s10953-024-01392-6","DOIUrl":null,"url":null,"abstract":"<div><p>The Pitzer–Debye–Hückel equation (PDH) is widely used as the long-range term in electrolyte local composition models to describe the non-ideality of electrolyte solutions in the low concentration range. However, the PDH equation’s derivation typically involves disregarding the third term of the radial distribution function, which leaves uncertainties regarding its impact on asymmetric systems, especially those with high asymmetry. This paper addresses this issue by introducing a trinomial radial distribution function and re-deriving the PDH equation, aiming to evaluate the efficacy of the modified equation in describing various asymmetric electrolyte systems at low concentrations (0–1 mol·kg<sup>−1</sup>). Initially, the osmotic coefficients of 19 single asymmetric electrolyte systems were fitted using the modified PDH equation (M-PDH). The results demonstrated that the accuracy of the M-PDH equation was significantly higher compared to the original PDH equation, yielding standard deviations (SD) of 0.1812 and 0.4238, respectively. Furthermore, an analysis and recommendation for the distance parameter <i>b</i> were provided. Finally, a comparative analysis was conducted to assess the contributions of the third term of the radial distribution function in contrast to the first two terms to the osmotic coefficients. Overall, this study enhances our understanding of how asymmetry affects the PDH equation in describing the thermodynamic properties of electrolyte systems.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10953-024-01392-6","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The Pitzer–Debye–Hückel equation (PDH) is widely used as the long-range term in electrolyte local composition models to describe the non-ideality of electrolyte solutions in the low concentration range. However, the PDH equation’s derivation typically involves disregarding the third term of the radial distribution function, which leaves uncertainties regarding its impact on asymmetric systems, especially those with high asymmetry. This paper addresses this issue by introducing a trinomial radial distribution function and re-deriving the PDH equation, aiming to evaluate the efficacy of the modified equation in describing various asymmetric electrolyte systems at low concentrations (0–1 mol·kg−1). Initially, the osmotic coefficients of 19 single asymmetric electrolyte systems were fitted using the modified PDH equation (M-PDH). The results demonstrated that the accuracy of the M-PDH equation was significantly higher compared to the original PDH equation, yielding standard deviations (SD) of 0.1812 and 0.4238, respectively. Furthermore, an analysis and recommendation for the distance parameter b were provided. Finally, a comparative analysis was conducted to assess the contributions of the third term of the radial distribution function in contrast to the first two terms to the osmotic coefficients. Overall, this study enhances our understanding of how asymmetry affects the PDH equation in describing the thermodynamic properties of electrolyte systems.

Abstract Image

单不对称水电解质体系的 Pitzer-Debye-Hückel 公式的改进
Pitzer-Debye-Hückel 公式(PDH)被广泛用作电解质局部成分模型中的长程项,用于描述低浓度范围内电解质溶液的非理想性。然而,PDH 方程的推导通常需要忽略径向分布函数的第三项,这就给它对不对称体系,尤其是高不对称体系的影响留下了不确定性。本文通过引入三叉径向分布函数和重新推导 PDH 方程来解决这一问题,旨在评估修改后的方程在低浓度(0-1 mol-kg-1)下描述各种不对称电解质系统的有效性。首先,使用修正的 PDH 方程(M-PDH)拟合了 19 种单一不对称电解质体系的渗透系数。结果表明,与原始 PDH 方程相比,M-PDH 方程的准确性显著提高,其标准偏差(SD)分别为 0.1812 和 0.4238。此外,还对距离参数 b 进行了分析并提出了建议。最后,还进行了比较分析,以评估径向分布函数第三项与前两项对渗透系数的贡献。总之,这项研究加深了我们对不对称如何影响 PDH 方程描述电解质系统热力学性质的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信