Unlocking sustainable power: advances in aqueous processing and water-soluble binders for NMC cathodes in high-voltage Li-ion batteries

Ana Clara Rolandi, Iratxe de Meatza, Nerea Casado, Maria Forsyth, David Mecerreyes and Cristina Pozo-Gonzalo
{"title":"Unlocking sustainable power: advances in aqueous processing and water-soluble binders for NMC cathodes in high-voltage Li-ion batteries","authors":"Ana Clara Rolandi, Iratxe de Meatza, Nerea Casado, Maria Forsyth, David Mecerreyes and Cristina Pozo-Gonzalo","doi":"10.1039/D4SU00098F","DOIUrl":null,"url":null,"abstract":"<p >Current cathode electrode processing of lithium-ion batteries relies on the conventional use of polyvinylidene fluoride (PVDF) as a binder, accompanied by the toxic solvent <em>N</em>-methylpyrrolidone (NMP). Within cathode materials, the LiNi<small><sub><em>x</em></sub></small>Mn<small><sub>1−<em>x</em>−<em>y</em></sub></small>Co<small><sub><em>y</em></sub></small>O<small><sub>2</sub></small> (NMC) families stand out as most promising candidates for the next generation of lithium-ion batteries, boasting high energy density and capacity. This review extensively compares traditional battery manufacturing methods with the use of emerging waterborne binders, highlighting the benefits in terms of cost-effectiveness, environmental sustainability, and enhanced processing conditions. The transition to sustainable aqueous processing encounters challenges, including pH elevation, aluminium collector corrosion, and lithium leaching from the NMC materials. The exploration extends to tailored binder selection and additives, crucial in optimizing electrochemical properties for distinct NMC compositions, such as LiNi<small><sub>0.33</sub></small>Mn<small><sub>0.33</sub></small>Co<small><sub>0.33</sub></small>O<small><sub>2</sub></small> (NMC 111), LiNi<small><sub>0.5</sub></small>Mn<small><sub>0.3</sub></small>Co<small><sub>0.2</sub></small>O<small><sub>2</sub></small> (NMC 532), LiNi<small><sub>0.6</sub></small>Mn<small><sub>0.2</sub></small>Co<small><sub>0.2</sub></small>O<small><sub>2</sub></small> (NMC 622) and LiNi<small><sub>0.8</sub></small>Mn<small><sub>0.1</sub></small>Co<small><sub>0.1</sub></small>O<small><sub>2</sub></small> (NMC 811), and addressing challenges inherent in their aqueous processing. The integration of aqueous binders promises advancements and also shapes a strategic outlook for future research, contributing significantly to the sustainability of lithium-ion batteries.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/su/d4su00098f?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC sustainability","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/su/d4su00098f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Current cathode electrode processing of lithium-ion batteries relies on the conventional use of polyvinylidene fluoride (PVDF) as a binder, accompanied by the toxic solvent N-methylpyrrolidone (NMP). Within cathode materials, the LiNixMn1−xyCoyO2 (NMC) families stand out as most promising candidates for the next generation of lithium-ion batteries, boasting high energy density and capacity. This review extensively compares traditional battery manufacturing methods with the use of emerging waterborne binders, highlighting the benefits in terms of cost-effectiveness, environmental sustainability, and enhanced processing conditions. The transition to sustainable aqueous processing encounters challenges, including pH elevation, aluminium collector corrosion, and lithium leaching from the NMC materials. The exploration extends to tailored binder selection and additives, crucial in optimizing electrochemical properties for distinct NMC compositions, such as LiNi0.33Mn0.33Co0.33O2 (NMC 111), LiNi0.5Mn0.3Co0.2O2 (NMC 532), LiNi0.6Mn0.2Co0.2O2 (NMC 622) and LiNi0.8Mn0.1Co0.1O2 (NMC 811), and addressing challenges inherent in their aqueous processing. The integration of aqueous binders promises advancements and also shapes a strategic outlook for future research, contributing significantly to the sustainability of lithium-ion batteries.

Abstract Image

Abstract Image

释放可持续动力:高压锂离子电池中 NMC 正极的水处理和水溶性粘合剂方面的进展
目前,锂离子电池的阴极电极加工依赖于传统的聚偏氟乙烯(PVDF)粘合剂和有毒溶剂 N-甲基吡咯烷酮(NMP)。在正极材料中,LiNixMn1-x-yCoyO2(NMC)系列具有高能量密度和容量,是下一代锂离子电池最有前途的候选材料。本综述对传统电池制造方法和新兴水性粘合剂的使用进行了广泛比较,强调了在成本效益、环境可持续性和改善加工条件方面的优势。在向可持续水性加工过渡的过程中遇到了各种挑战,包括 pH 值升高、铝集流体腐蚀以及 NMC 材料的锂浸出。这项探索延伸到了量身定制的粘合剂选择和添加剂,这对于优化不同 NMC 成分的电化学特性至关重要,如 LiNi0.33Mn0.33Co0.33O2 (NMC 111)、LiNi0.5Mn0.3Co0.2O2 (NMC 532)、LiNi0.6Mn0.2Co0.2O2 (NMC 622) 和 LiNi0.8Mn0.1Co0.1O2 (NMC 811)等不同 NMC 成分的电化学性能,以及应对其水处理过程中固有的挑战至关重要。水性粘合剂的整合有望带来进步,同时也为未来研究描绘了战略前景,为锂离子电池的可持续发展做出重大贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信