Visualization for Recommendation Explainability: A Survey and New Perspectives

IF 3.6 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Mohamed Amine Chatti, Mouadh Guesmi, Arham Muslim
{"title":"Visualization for Recommendation Explainability: A Survey and New Perspectives","authors":"Mohamed Amine Chatti, Mouadh Guesmi, Arham Muslim","doi":"10.1145/3672276","DOIUrl":null,"url":null,"abstract":"<p>Providing system-generated explanations for recommendations represents an important step towards transparent and trustworthy recommender systems. Explainable recommender systems provide a human-understandable rationale for their outputs. Over the past two decades, explainable recommendation has attracted much attention in the recommender systems research community. This paper aims to provide a comprehensive review of research efforts on visual explanation in recommender systems. More concretely, we systematically review the literature on explanations in recommender systems based on four dimensions, namely explanation aim, explanation scope, explanation method, and explanation format. Recognizing the importance of visualization, we approach the recommender system literature from the angle of explanatory visualizations, that is using visualizations as a display style of explanation. As a result, we derive a set of guidelines that might be constructive for designing explanatory visualizations in recommender systems and identify perspectives for future work in this field. The aim of this review is to help recommendation researchers and practitioners better understand the potential of visually explainable recommendation research and to support them in the systematic design of visual explanations in current and future recommender systems.</p>","PeriodicalId":48574,"journal":{"name":"ACM Transactions on Interactive Intelligent Systems","volume":"28 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Interactive Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3672276","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Providing system-generated explanations for recommendations represents an important step towards transparent and trustworthy recommender systems. Explainable recommender systems provide a human-understandable rationale for their outputs. Over the past two decades, explainable recommendation has attracted much attention in the recommender systems research community. This paper aims to provide a comprehensive review of research efforts on visual explanation in recommender systems. More concretely, we systematically review the literature on explanations in recommender systems based on four dimensions, namely explanation aim, explanation scope, explanation method, and explanation format. Recognizing the importance of visualization, we approach the recommender system literature from the angle of explanatory visualizations, that is using visualizations as a display style of explanation. As a result, we derive a set of guidelines that might be constructive for designing explanatory visualizations in recommender systems and identify perspectives for future work in this field. The aim of this review is to help recommendation researchers and practitioners better understand the potential of visually explainable recommendation research and to support them in the systematic design of visual explanations in current and future recommender systems.

可视化推荐的可解释性:调查与新视角
为推荐提供由系统生成的解释,是实现透明、可信的推荐系统的重要一步。可解释的推荐系统为其输出提供了人类可以理解的理由。过去二十年来,可解释推荐在推荐系统研究领域引起了广泛关注。本文旨在全面回顾有关推荐系统中视觉解释的研究工作。更具体地说,我们从解释目的、解释范围、解释方法和解释格式四个维度系统地回顾了推荐系统中的解释文献。由于认识到可视化的重要性,我们从解释可视化的角度,即使用可视化作为解释的显示方式,来研究推荐系统的相关文献。因此,我们得出了一套对推荐系统中解释性可视化设计可能具有建设性的指导原则,并确定了这一领域未来工作的前景。本综述旨在帮助推荐研究人员和从业人员更好地理解可视化解释推荐研究的潜力,并支持他们在当前和未来的推荐系统中系统地设计可视化解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACM Transactions on Interactive Intelligent Systems
ACM Transactions on Interactive Intelligent Systems Computer Science-Human-Computer Interaction
CiteScore
7.80
自引率
2.90%
发文量
38
期刊介绍: The ACM Transactions on Interactive Intelligent Systems (TiiS) publishes papers on research concerning the design, realization, or evaluation of interactive systems that incorporate some form of machine intelligence. TIIS articles come from a wide range of research areas and communities. An article can take any of several complementary views of interactive intelligent systems, focusing on: the intelligent technology, the interaction of users with the system, or both aspects at once.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信