Interacting many-particle systems in the random Kac–Luttinger model and proof of Bose–Einstein condensation

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
{"title":"Interacting many-particle systems in the random Kac–Luttinger model and proof of Bose–Einstein condensation","authors":"","doi":"10.1016/j.matpur.2024.06.009","DOIUrl":null,"url":null,"abstract":"<div><p>Following a model originally considered by Kac and Luttinger, we study interacting many-particle systems in a random background. The background consists of hard spherical obstacles with fixed radius and that are distributed via a Poisson point process with constant intensity on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>, <span><math><mn>2</mn><mo>≤</mo><mi>d</mi><mo>∈</mo><mi>N</mi></math></span>. Interactions among the (bosonic) particles are described through repulsive pair potentials of mean-field type. As a main result, we prove (complete) Bose–Einstein condensation (BEC) in the thermodynamic limit and into the minimizer of a Hartree-type functional, in probability or with probability almost one depending on the strength of the interaction. As an important ingredient, we use very recent results obtained by Alain-Sol Sznitman regarding the spectral gap of the Dirichlet Laplacian in a Poissonian cloud of hard spherical obstacles in large boxes. To the best of our knowledge, our paper provides the first proof of BEC for systems of interacting particles in the Kac–Luttinger model, or in fact for some higher-dimensional interacting random continuum model.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782424000849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Following a model originally considered by Kac and Luttinger, we study interacting many-particle systems in a random background. The background consists of hard spherical obstacles with fixed radius and that are distributed via a Poisson point process with constant intensity on Rd, 2dN. Interactions among the (bosonic) particles are described through repulsive pair potentials of mean-field type. As a main result, we prove (complete) Bose–Einstein condensation (BEC) in the thermodynamic limit and into the minimizer of a Hartree-type functional, in probability or with probability almost one depending on the strength of the interaction. As an important ingredient, we use very recent results obtained by Alain-Sol Sznitman regarding the spectral gap of the Dirichlet Laplacian in a Poissonian cloud of hard spherical obstacles in large boxes. To the best of our knowledge, our paper provides the first proof of BEC for systems of interacting particles in the Kac–Luttinger model, or in fact for some higher-dimensional interacting random continuum model.

随机卡-鲁丁格模型中的相互作用多粒子系统和玻色-爱因斯坦凝聚的证明
按照 Kac 和 Luttinger 首次考虑的模型,我们研究了随机介质中大量相互作用粒子的系统。介质由固定半径的硬球形障碍物组成,这些障碍物通过在Ⅳ上恒定强度的点泊松过程分布。玻色)粒子之间的相互作用由成对斥均场势描述。作为一个主要结果,我们证明了在热力学极限中,根据相互作用的强度,在哈特里型函数的最小化处会发生(完全的)玻色-爱因斯坦凝聚(BEC),其概率或概率几乎为 1。作为一项重要内容,我们使用了阿兰-索尔-斯尼特曼(Alain-Sol Sznitman)最近获得的关于大盒子中硬质球形障碍物的泊松云中的狄利克拉普拉斯谱偏差的结果。据我们所知,我们的论文首次证明了 Kac-Luttinger 模型中相互作用粒子系统的 BEC,甚至证明了具有相互作用的高维连续随机模型的 BEC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信