Classification of solutions to Hardy-Sobolev doubly critical systems

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
{"title":"Classification of solutions to Hardy-Sobolev doubly critical systems","authors":"","doi":"10.1016/j.matpur.2024.06.010","DOIUrl":null,"url":null,"abstract":"<div><p>This work deals with a family of Hardy-Sobolev doubly critical system defined in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. More precisely, we provide a classification of the positive solutions, whose expressions comprise multiplies of solutions of the decoupled scalar equation. Our strategy is based on the symmetry of the solutions, deduced via a suitable version of the moving planes technique for cooperative singular systems, joint with the study of the asymptotic behavior by using the Moser's iteration scheme.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021782424000850/pdfft?md5=3a1b772d26d69cb6dad1bf2f9090d290&pid=1-s2.0-S0021782424000850-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782424000850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

This work deals with a family of Hardy-Sobolev doubly critical system defined in Rn. More precisely, we provide a classification of the positive solutions, whose expressions comprise multiplies of solutions of the decoupled scalar equation. Our strategy is based on the symmetry of the solutions, deduced via a suitable version of the moving planes technique for cooperative singular systems, joint with the study of the asymptotic behavior by using the Moser's iteration scheme.

Hardy-Sobolev 双临界系统解的分类
本文致力于研究定义于......的双临界哈代-索博列夫系统族。更确切地说,我们对正解进行了分类,其表达式包括解耦标量方程解的倍数。我们的策略是基于解的对称性,通过对合作奇异系统的 "移动平面 "技术的改编版进行推导,并使用莫瑟迭代方案对渐近行为进行研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信