Spectral Relations for a Matrix Model in Fermionic Fock Space

IF 0.5 Q3 MATHEMATICS
T. Kh. Rasulov, D. E. Ismoilova
{"title":"Spectral Relations for a Matrix Model in Fermionic Fock Space","authors":"T. Kh. Rasulov, D. E. Ismoilova","doi":"10.3103/s1066369x2470021x","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>A matrix model <span>\\(\\mathcal{A}\\)</span> is considered related to a system describing two identical fermions and one particle of another nature on a lattice, interacting via annihilation and creation operators. The problem of the study of the spectrum of a block operator matrix <span>\\(\\mathcal{A}\\)</span> is reduced to the investigation of the spectrum of block operator matrices of order three with a discrete variable, and the relations for the spectrum, essential spectrum, and point spectrum are established. Two-particle and three-particle branches of the essential spectrum of the block operator matrix <span>\\(\\mathcal{A}\\)</span> are singled out.</p>","PeriodicalId":46110,"journal":{"name":"Russian Mathematics","volume":"9 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s1066369x2470021x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A matrix model \(\mathcal{A}\) is considered related to a system describing two identical fermions and one particle of another nature on a lattice, interacting via annihilation and creation operators. The problem of the study of the spectrum of a block operator matrix \(\mathcal{A}\) is reduced to the investigation of the spectrum of block operator matrices of order three with a discrete variable, and the relations for the spectrum, essential spectrum, and point spectrum are established. Two-particle and three-particle branches of the essential spectrum of the block operator matrix \(\mathcal{A}\) are singled out.

费米子 Fock 空间矩阵模型的谱关系
摘要 矩阵模型(\(\mathcal{A}\)被认为与描述晶格上两个相同费米子和一个其他性质粒子的系统有关,它们通过湮灭和创造算子相互作用。块算子矩阵 \(\mathcal{A}\)谱的研究问题被简化为研究具有离散变量的三阶块算子矩阵的谱,并建立了谱、本质谱和点谱的关系。并指出了块算子矩阵 \(\mathcal{A}\)的本质谱的两粒子和三粒子分支。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Russian Mathematics
Russian Mathematics MATHEMATICS-
CiteScore
0.90
自引率
25.00%
发文量
0
期刊介绍: Russian Mathematics  is a peer reviewed periodical that encompasses the most significant research in both pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信