{"title":"Nano-pixel polarization rotator for a photonic integrated breath sensor","authors":"Sara Bruhier, Haisong Jiang and Kiichi Hamamoto","doi":"10.35848/1347-4065/ad5299","DOIUrl":null,"url":null,"abstract":"In response to the global aging population, a photonic-integrated-circuit sensor is investigated for the detection of disease markers within human breath content. The device relies on cavity-ring-down spectroscopy with an amplifying medium and loop feedback to secure sufficient sensitivity down to ppm-order concentration detection. This configuration, however, might cause unwanted oscillation, and the polarization rotation method has been proposed to prevent this issue. We have researched a waveguide-based polarization rotator using nano-pixels. The device consists of two regions: (1) From TE00 mode TE10 modes conversion and (2) TE10 to TM00 modes conversion. As the intermediary TE10 mode quality is key to realizing polarization rotation performance, the purpose of this study is to realize high-quality TE10 by employing the mean-squared-error criterion for waveguide design optimization. A finite-difference time-domain simulation with this method reveals a TE10 mode with 1% accuracy that results in a polarization extinction ratio improved from 4.3 to 8.6 dB.","PeriodicalId":14741,"journal":{"name":"Japanese Journal of Applied Physics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japanese Journal of Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.35848/1347-4065/ad5299","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In response to the global aging population, a photonic-integrated-circuit sensor is investigated for the detection of disease markers within human breath content. The device relies on cavity-ring-down spectroscopy with an amplifying medium and loop feedback to secure sufficient sensitivity down to ppm-order concentration detection. This configuration, however, might cause unwanted oscillation, and the polarization rotation method has been proposed to prevent this issue. We have researched a waveguide-based polarization rotator using nano-pixels. The device consists of two regions: (1) From TE00 mode TE10 modes conversion and (2) TE10 to TM00 modes conversion. As the intermediary TE10 mode quality is key to realizing polarization rotation performance, the purpose of this study is to realize high-quality TE10 by employing the mean-squared-error criterion for waveguide design optimization. A finite-difference time-domain simulation with this method reveals a TE10 mode with 1% accuracy that results in a polarization extinction ratio improved from 4.3 to 8.6 dB.
期刊介绍:
The Japanese Journal of Applied Physics (JJAP) is an international journal for the advancement and dissemination of knowledge in all fields of applied physics. JJAP is a sister journal of the Applied Physics Express (APEX) and is published by IOP Publishing Ltd on behalf of the Japan Society of Applied Physics (JSAP).
JJAP publishes articles that significantly contribute to the advancements in the applications of physical principles as well as in the understanding of physics in view of particular applications in mind. Subjects covered by JJAP include the following fields:
• Semiconductors, dielectrics, and organic materials
• Photonics, quantum electronics, optics, and spectroscopy
• Spintronics, superconductivity, and strongly correlated materials
• Device physics including quantum information processing
• Physics-based circuits and systems
• Nanoscale science and technology
• Crystal growth, surfaces, interfaces, thin films, and bulk materials
• Plasmas, applied atomic and molecular physics, and applied nuclear physics
• Device processing, fabrication and measurement technologies, and instrumentation
• Cross-disciplinary areas such as bioelectronics/photonics, biosensing, environmental/energy technologies, and MEMS