{"title":"List Privacy Under Function Recoverability","authors":"Ajaykrishnan Nageswaran;Prakash Narayan","doi":"10.1109/TIT.2024.3420892","DOIUrl":null,"url":null,"abstract":"For a given function of user data, a querier must recover with at least a prescribed probability, the value of the function based on a user-provided query response. Subject to this requirement, the user forms the query response so as to minimize the likelihood of the querier guessing a list of prescribed size to which the data value belongs based on the query response. We obtain a general converse upper bound for maximum list privacy. This bound is shown to be tight for the case of a binary-valued function through an explicit achievability scheme that involves an add-noise query response.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"70 9","pages":"6620-6626"},"PeriodicalIF":2.2000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10577989/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
For a given function of user data, a querier must recover with at least a prescribed probability, the value of the function based on a user-provided query response. Subject to this requirement, the user forms the query response so as to minimize the likelihood of the querier guessing a list of prescribed size to which the data value belongs based on the query response. We obtain a general converse upper bound for maximum list privacy. This bound is shown to be tight for the case of a binary-valued function through an explicit achievability scheme that involves an add-noise query response.
期刊介绍:
The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.