{"title":"IBAQ: Frequency-Domain Backdoor Attack Threatening Autonomous Driving via Quadratic Phase","authors":"Jinghan Qiu, Honglong Chen, Junjian Li, Yudong Gao, Junwei Li, Xingang Wang","doi":"10.1145/3673904","DOIUrl":null,"url":null,"abstract":"<p>The rapid evolution of backdoor attacks has emerged as a significant threat to the security of autonomous driving models. An attacker injects a backdoor into the model by adding triggers to the samples, which can be activated to manipulate the model’s inference. Backdoor attacks can lead to severe consequences, such as misidentifying traffic signs during autonomous driving, posing a risk of causing traffic accidents. Recently, there has been a gradual evolution of frequency-domain backdoor attacks. However, since the change of both amplitude and its corresponding phase will significantly affect image appearance, most of the existing frequency-domain backdoor attacks change only the amplitude, which results in a suboptimal efficacy of the attack. In this work, we propose an attack called IBAQ, to solve this problem by blurring semantic information of the trigger image through the quadratic phase. Initially, we convert the trigger and benign sample to YCrCb space. Then, we perform the fast Fourier transform on the Y channel, blending the trigger image’s amplitude and quadratic phase linearly with the benign sample’s amplitude and phase. IBAQ achieves covert injection of trigger information within amplitude and phase, enhancing the attack effect. We validate the effectiveness and stealthiness of IBAQ through comprehensive experiments.</p>","PeriodicalId":50919,"journal":{"name":"ACM Transactions on Autonomous and Adaptive Systems","volume":"8 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Autonomous and Adaptive Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3673904","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid evolution of backdoor attacks has emerged as a significant threat to the security of autonomous driving models. An attacker injects a backdoor into the model by adding triggers to the samples, which can be activated to manipulate the model’s inference. Backdoor attacks can lead to severe consequences, such as misidentifying traffic signs during autonomous driving, posing a risk of causing traffic accidents. Recently, there has been a gradual evolution of frequency-domain backdoor attacks. However, since the change of both amplitude and its corresponding phase will significantly affect image appearance, most of the existing frequency-domain backdoor attacks change only the amplitude, which results in a suboptimal efficacy of the attack. In this work, we propose an attack called IBAQ, to solve this problem by blurring semantic information of the trigger image through the quadratic phase. Initially, we convert the trigger and benign sample to YCrCb space. Then, we perform the fast Fourier transform on the Y channel, blending the trigger image’s amplitude and quadratic phase linearly with the benign sample’s amplitude and phase. IBAQ achieves covert injection of trigger information within amplitude and phase, enhancing the attack effect. We validate the effectiveness and stealthiness of IBAQ through comprehensive experiments.
期刊介绍:
TAAS addresses research on autonomous and adaptive systems being undertaken by an increasingly interdisciplinary research community -- and provides a common platform under which this work can be published and disseminated. TAAS encourages contributions aimed at supporting the understanding, development, and control of such systems and of their behaviors.
TAAS addresses research on autonomous and adaptive systems being undertaken by an increasingly interdisciplinary research community - and provides a common platform under which this work can be published and disseminated. TAAS encourages contributions aimed at supporting the understanding, development, and control of such systems and of their behaviors. Contributions are expected to be based on sound and innovative theoretical models, algorithms, engineering and programming techniques, infrastructures and systems, or technological and application experiences.