Molecular Design and High-Throughput Virtual Screening of Electron Donor and Non-fullerene Acceptors for Organic Solar Cells

IF 6 3区 工程技术 Q2 ENERGY & FUELS
Solar RRL Pub Date : 2024-06-30 DOI:10.1002/solr.202400370
Rui Cao, Cai-Rong Zhang, Ming Li, Xiao-Meng Liu, Mei-Ling Zhang, Ji-Jun Gong, Yu-Hong Chen, Zi-Jiang Liu, You-Zhi Wu, Hong-Shan Chen
{"title":"Molecular Design and High-Throughput Virtual Screening of Electron Donor and Non-fullerene Acceptors for Organic Solar Cells","authors":"Rui Cao,&nbsp;Cai-Rong Zhang,&nbsp;Ming Li,&nbsp;Xiao-Meng Liu,&nbsp;Mei-Ling Zhang,&nbsp;Ji-Jun Gong,&nbsp;Yu-Hong Chen,&nbsp;Zi-Jiang Liu,&nbsp;You-Zhi Wu,&nbsp;Hong-Shan Chen","doi":"10.1002/solr.202400370","DOIUrl":null,"url":null,"abstract":"<p>The complicated trilateral relationships among molecular structures, properties, and photovoltaic performances of electron donor and acceptor materials hinder the rapid improvement of power conversion efficiency (PCE) of organic solar cells (OSCs). Herein, the database of 310 donor and non-fullerene acceptor pairs is constructed and 39 molecular structure descriptors are selected. Four kinds of machine learning (ML) algorithms random forest (RF), extra trees regression, gradient boosting regression trees, and adaptive boosting are applied to predict photovoltaic parameters. The coefficient of determination, Pearson correlation coefficient, mean absolute error, and root mean square error are adopted to evaluate ML performance. The results show that the RF model exhibits the best prediction accuracy. The Gini important analysis suggests the fused ring and aromatic heterocycles are critical fragments in determining PCE. The molecular unit sets are constructed by cutting each donor and acceptor molecules in database. The 31 752 D-π-A-π type donor molecules and 5 455 164 A-π-D-π-A type acceptor molecules are designed by recombination of molecular units, and 173 212 367 328 donor–acceptor pairs are generated by combining the newly designed donor and acceptor molecules. Based on the predicted PCE using the trained RF model, 42 donor–acceptor pairs exhibit the predicted PCE &gt; 16%, in which the highest PCE is 16.24%.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"8 15","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202400370","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The complicated trilateral relationships among molecular structures, properties, and photovoltaic performances of electron donor and acceptor materials hinder the rapid improvement of power conversion efficiency (PCE) of organic solar cells (OSCs). Herein, the database of 310 donor and non-fullerene acceptor pairs is constructed and 39 molecular structure descriptors are selected. Four kinds of machine learning (ML) algorithms random forest (RF), extra trees regression, gradient boosting regression trees, and adaptive boosting are applied to predict photovoltaic parameters. The coefficient of determination, Pearson correlation coefficient, mean absolute error, and root mean square error are adopted to evaluate ML performance. The results show that the RF model exhibits the best prediction accuracy. The Gini important analysis suggests the fused ring and aromatic heterocycles are critical fragments in determining PCE. The molecular unit sets are constructed by cutting each donor and acceptor molecules in database. The 31 752 D-π-A-π type donor molecules and 5 455 164 A-π-D-π-A type acceptor molecules are designed by recombination of molecular units, and 173 212 367 328 donor–acceptor pairs are generated by combining the newly designed donor and acceptor molecules. Based on the predicted PCE using the trained RF model, 42 donor–acceptor pairs exhibit the predicted PCE > 16%, in which the highest PCE is 16.24%.

Abstract Image

有机太阳能电池电子供体和非富勒烯受体的分子设计和高通量虚拟筛选
电子供体和受体材料的分子结构、性质和光电性能三者之间的复杂关系阻碍了有机太阳能电池(OSC)功率转换效率(PCE)的快速提高。在此,我们构建了包含 310 对电子供体和非富勒烯受体的数据库,并选择了 39 个分子结构描述符。应用随机森林(RF)、额外树回归、梯度提升回归树和自适应提升四种机器学习(ML)算法预测光伏参数。采用判定系数、皮尔逊相关系数、平均绝对误差和均方根误差来评估 ML 性能。结果表明,射频模型的预测精度最高。基尼重要度分析表明,融合环和芳香杂环是决定 PCE 的关键片段。通过对数据库中的供体和受体分子进行切割,构建了分子单元集。通过分子单元的重组设计出 31,752 个 D-π-A-π 型供体分子和 5,455,164 个 A-π-D-π-A 型受体分子,并通过组合新设计的供体和受体分子生成 173,212,367,328 对供体-受体。根据使用训练有素的射频模型预测的 PCE,42 对供体-受体对显示出预测的 PCE>16%,其中最高的 PCE 为 16.24%。本文受版权保护,未经许可不得转载。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solar RRL
Solar RRL Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍: Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信