Mitigating Delamination in Perovskite/Silicon Tandem Solar Modules

IF 6 3区 工程技术 Q2 ENERGY & FUELS
Solar RRL Pub Date : 2024-06-25 DOI:10.1002/solr.202400289
Helen Bristow, Xiaole Li, Maxime Babics, Sofiia Kosar, Anil Reddy Pininti, Shanshan Zhang, Badri Vishal, Shruti Sarwade, Arsalan Razzaq, Ahmed Ali Said, Gilles Lubineau, Stefaan De Wolf
{"title":"Mitigating Delamination in Perovskite/Silicon Tandem Solar Modules","authors":"Helen Bristow,&nbsp;Xiaole Li,&nbsp;Maxime Babics,&nbsp;Sofiia Kosar,&nbsp;Anil Reddy Pininti,&nbsp;Shanshan Zhang,&nbsp;Badri Vishal,&nbsp;Shruti Sarwade,&nbsp;Arsalan Razzaq,&nbsp;Ahmed Ali Said,&nbsp;Gilles Lubineau,&nbsp;Stefaan De Wolf","doi":"10.1002/solr.202400289","DOIUrl":null,"url":null,"abstract":"<p>As perovskite/silicon tandem solar cells head toward industrialization, one emerging challenge relates to the mechanical reliability of these organic–inorganic multilayer devices. Herein, the fracture toughness and interfacial strength of monolithic p–i–n perovskite/silicon tandems are assessed in the context of module integration. While the weakest layer in the tandem stack investigated is found to be C<sub>60</sub>, used here as electron-transport layer (interfacial tensile strength of 0.64 MPa), more concerningly, the fracture energy of the C<sub>60</sub>/tin-oxide interface is found to be only 1.2 J m<sup>−2</sup>. The low fracture toughness of perovskite/silicon tandems can encourage crack propagation and large-scale delamination during processes used for their integration into modules such as cell cutting, interconnection, and vacuum lamination. By improving the tin oxide buffer layer properties and reducing sputtering-induced internal stress (associated with the transparent top electrode deposition onto the tin the oxide buffer layer), the fracture energy is improved to over 160 J m<sup>−2</sup>. A second strategy to mitigate delamination due to the low fracture toughness of the cells is tailoring encapsulation and cell processing techniques specifically toward the perovskite/silicon tandem technology. In this work, a critical reliability issue, relevant for any perovskite-based optoelectronic technology requiring device packaging, is addressed.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"8 14","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202400289","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

As perovskite/silicon tandem solar cells head toward industrialization, one emerging challenge relates to the mechanical reliability of these organic–inorganic multilayer devices. Herein, the fracture toughness and interfacial strength of monolithic p–i–n perovskite/silicon tandems are assessed in the context of module integration. While the weakest layer in the tandem stack investigated is found to be C60, used here as electron-transport layer (interfacial tensile strength of 0.64 MPa), more concerningly, the fracture energy of the C60/tin-oxide interface is found to be only 1.2 J m−2. The low fracture toughness of perovskite/silicon tandems can encourage crack propagation and large-scale delamination during processes used for their integration into modules such as cell cutting, interconnection, and vacuum lamination. By improving the tin oxide buffer layer properties and reducing sputtering-induced internal stress (associated with the transparent top electrode deposition onto the tin the oxide buffer layer), the fracture energy is improved to over 160 J m−2. A second strategy to mitigate delamination due to the low fracture toughness of the cells is tailoring encapsulation and cell processing techniques specifically toward the perovskite/silicon tandem technology. In this work, a critical reliability issue, relevant for any perovskite-based optoelectronic technology requiring device packaging, is addressed.

Abstract Image

Abstract Image

减轻过氧化物/硅串联太阳能模块中的分层现象
随着过氧化物/硅串联太阳能电池走向工业化,一个新出现的挑战与这些有机-无机多层器件的机械可靠性有关。本文在模块集成的背景下评估了单片 pi-i-n 过氧化物/硅串联太阳能电池的断裂韧性和界面强度。研究发现,串联堆栈中最薄弱的层是用作电子传输层的 C60(界面抗拉强度为 0.64 兆帕),更令人担忧的是,C60/氧化锡界面的断裂能仅为 1.2 焦耳/米-2。过氧化锡/硅串联材料的断裂韧性较低,在将其集成到模块(如电池切割、互连和真空层压)的过程中,会助长裂纹扩展和大规模分层。通过改善氧化锡缓冲层的性能和减少溅射引起的内应力(与透明顶电极沉积到氧化锡缓冲层上有关),断裂能提高到 160 J m-2 以上。由于电池的断裂韧性较低,减轻分层现象的第二种策略是专门针对过氧化锡/硅串联技术定制封装和电池处理技术。在这项工作中,解决了一个与任何需要器件封装的基于包晶石的光电技术相关的关键可靠性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solar RRL
Solar RRL Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍: Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信