Tangent spaces of diffeological spaces and their variants

Masaki Taho
{"title":"Tangent spaces of diffeological spaces and their variants","authors":"Masaki Taho","doi":"arxiv-2406.04703","DOIUrl":null,"url":null,"abstract":"Several methods have been proposed to define tangent spaces for diffeological\nspaces. Among them, the internal tangent functor is obtained as the left Kan\nextension of the tangent functor for manifolds. However, the right Kan\nextension of the same functor has not been well-studied. In this paper, we\ninvestigate the relationship between this right Kan extension and the external\ntangent space, another type of tangent space for diffeological spaces. We prove\nthat by slightly modifying the inclusion functor used in the right Kan\nextension, we obtain a right tangent space functor, which is almost isomorphic\nto the external tangent space. Furthermore, we show that when a diffeological\nspace satisfies a favorable property called smoothly regular, this right\ntangent space coincides with the right Kan extension mentioned earlier.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.04703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Several methods have been proposed to define tangent spaces for diffeological spaces. Among them, the internal tangent functor is obtained as the left Kan extension of the tangent functor for manifolds. However, the right Kan extension of the same functor has not been well-studied. In this paper, we investigate the relationship between this right Kan extension and the external tangent space, another type of tangent space for diffeological spaces. We prove that by slightly modifying the inclusion functor used in the right Kan extension, we obtain a right tangent space functor, which is almost isomorphic to the external tangent space. Furthermore, we show that when a diffeological space satisfies a favorable property called smoothly regular, this right tangent space coincides with the right Kan extension mentioned earlier.
差分空间的切线空间及其变体
人们提出了几种方法来定义差分空间的切空间。其中,内切函子是作为流形的切函子的左 Kanextension 而得到的。然而,同一函子的右 Kanextension 还没有得到很好的研究。在本文中,我们研究了这个右坎扩展与外切空间(衍空间的另一种切空间)之间的关系。我们证明,通过稍微修改右坎扩展中使用的包含函子,我们得到了一个右切空间函子,它与外切空间几乎同构。此外,我们还证明了当差分空间满足一种称为平滑正则的有利性质时,这个右切空间与前面提到的右坎扩展重合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信