Formal groups over non-commutative rings

Christian Nassau
{"title":"Formal groups over non-commutative rings","authors":"Christian Nassau","doi":"arxiv-2406.14247","DOIUrl":null,"url":null,"abstract":"We develop an extension of the usual theory of formal group laws where the\nbase ring is not required to be commutative and where the formal variables need\nneither be central nor have to commute with each other. We show that this is the natural kind of formal group law for the needs of\nalgebraic topology in the sense that a (possibly non-commutative) complex\noriented ring spectrum is canonically equipped with just such a formal group\nlaw. The universal formal group law is carried by the Baker-Richter spectrum\nM{\\xi} which plays a role analogous to MU in this non-commutative context. As suggested by previous work of Morava the Hopf algebra B of \"formal\ndiffeomorphisms of the non-commutative line\" of Brouder, Frabetti and\nKrattenthaler is central to the theory developed here. In particular, we verify\nMorava's conjecture that there is a representation of the Drinfeld\nquantum-double D(B) through cohomology operations in M{\\xi}.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"89 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.14247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We develop an extension of the usual theory of formal group laws where the base ring is not required to be commutative and where the formal variables need neither be central nor have to commute with each other. We show that this is the natural kind of formal group law for the needs of algebraic topology in the sense that a (possibly non-commutative) complex oriented ring spectrum is canonically equipped with just such a formal group law. The universal formal group law is carried by the Baker-Richter spectrum M{\xi} which plays a role analogous to MU in this non-commutative context. As suggested by previous work of Morava the Hopf algebra B of "formal diffeomorphisms of the non-commutative line" of Brouder, Frabetti and Krattenthaler is central to the theory developed here. In particular, we verify Morava's conjecture that there is a representation of the Drinfeld quantum-double D(B) through cohomology operations in M{\xi}.
非交换环上的形式群
我们发展了形式群法的通常理论的一个扩展,在这个扩展中,基环不要求是交换的,形式变量既不需要是中心变量,也不需要彼此交换。我们证明,对于代数拓扑学的需要来说,这是一种自然的形式群法,因为面向复环谱(可能是非交换的)就是典型地配备了这样一种形式群法。通用形式群法由贝克-里克特谱M{/xi}承载,它在这种非交换背景下扮演着类似于MU的角色。正如莫拉瓦之前的工作所建议的,布劳德、弗拉贝蒂和克拉滕塔勒的 "非交换线的形式衍变 "的霍普夫代数 B 是本文所发展的理论的核心。特别是,我们验证了莫拉瓦的猜想,即通过 M{\xi} 中的同调运算,存在德林费尔德量子偶 D(B) 的表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信