Thermally Constrained Codesign of Heterogeneous 3-D Integration of Compute-in-Memory, Digital ML Accelerator, and RISC-V Cores for Mixed ML and Non-ML Workloads
IF 2.8 2区 工程技术Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Yuan-Chun Luo;Anni Lu;Janak Sharda;Moritz Scherer;Jorge Tomas Gomez;Syed Shakib Sarwar;Ziyun Li;Reid Frederick Pinkham;Barbara De Salvo;Shimeng Yu
{"title":"Thermally Constrained Codesign of Heterogeneous 3-D Integration of Compute-in-Memory, Digital ML Accelerator, and RISC-V Cores for Mixed ML and Non-ML Workloads","authors":"Yuan-Chun Luo;Anni Lu;Janak Sharda;Moritz Scherer;Jorge Tomas Gomez;Syed Shakib Sarwar;Ziyun Li;Reid Frederick Pinkham;Barbara De Salvo;Shimeng Yu","doi":"10.1109/TVLSI.2024.3415481","DOIUrl":null,"url":null,"abstract":"Heterogeneous 3-D (H3D) integration not only reduces the chip form factor and fabrication cost but also allows the merging of diverse compute paradigms that suit different applications. This is especially attractive when modern algorithms, such as the augmented reality/virtual reality (AR/VR) workloads, consist of mixed machine learning (ML) and non-ML workloads. To date, codesign that considers the thermal, latency, and power constraints of H3D hardware is largely unexplored. In this work, a thermally aware framework for H3D hardware design is developed to evaluate the thermal, latency, and power trade-offs for a heterogeneous system with compute-in-memory (CIM), digital ML cores, and RISC-V cores. The framework solves for runtime tunable operating points described as the optimal speedup factor, the number of activated RISC-V cores, the cooling coefficient, and the activity rate based on user-defined criteria, achieving up to 135 TOPS and 215 TOPS/W under \n<inline-formula> <tex-math>$74~^{\\circ }$ </tex-math></inline-formula>\nC for the AR/VR workloads.","PeriodicalId":13425,"journal":{"name":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","volume":"32 9","pages":"1718-1725"},"PeriodicalIF":2.8000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10576629/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Heterogeneous 3-D (H3D) integration not only reduces the chip form factor and fabrication cost but also allows the merging of diverse compute paradigms that suit different applications. This is especially attractive when modern algorithms, such as the augmented reality/virtual reality (AR/VR) workloads, consist of mixed machine learning (ML) and non-ML workloads. To date, codesign that considers the thermal, latency, and power constraints of H3D hardware is largely unexplored. In this work, a thermally aware framework for H3D hardware design is developed to evaluate the thermal, latency, and power trade-offs for a heterogeneous system with compute-in-memory (CIM), digital ML cores, and RISC-V cores. The framework solves for runtime tunable operating points described as the optimal speedup factor, the number of activated RISC-V cores, the cooling coefficient, and the activity rate based on user-defined criteria, achieving up to 135 TOPS and 215 TOPS/W under
$74~^{\circ }$
C for the AR/VR workloads.
期刊介绍:
The IEEE Transactions on VLSI Systems is published as a monthly journal under the co-sponsorship of the IEEE Circuits and Systems Society, the IEEE Computer Society, and the IEEE Solid-State Circuits Society.
Design and realization of microelectronic systems using VLSI/ULSI technologies require close collaboration among scientists and engineers in the fields of systems architecture, logic and circuit design, chips and wafer fabrication, packaging, testing and systems applications. Generation of specifications, design and verification must be performed at all abstraction levels, including the system, register-transfer, logic, circuit, transistor and process levels.
To address this critical area through a common forum, the IEEE Transactions on VLSI Systems have been founded. The editorial board, consisting of international experts, invites original papers which emphasize and merit the novel systems integration aspects of microelectronic systems including interactions among systems design and partitioning, logic and memory design, digital and analog circuit design, layout synthesis, CAD tools, chips and wafer fabrication, testing and packaging, and systems level qualification. Thus, the coverage of these Transactions will focus on VLSI/ULSI microelectronic systems integration.