The Construction of a Nomogram Using the Pan-Immune-Inflammation Value Combined with a PILE Score for Immunotherapy Prediction Prognosis in Advanced NSCLC
{"title":"The Construction of a Nomogram Using the Pan-Immune-Inflammation Value Combined with a PILE Score for Immunotherapy Prediction Prognosis in Advanced NSCLC","authors":"Shixin Ma, Fei Li, Lunqing Wang","doi":"10.2147/cmar.s461964","DOIUrl":null,"url":null,"abstract":"<strong>Purpose:</strong> The purpose of this study was to investigate the predictive value of Pan-Immune-Inflammation Value (PIV) combined with the PILE score for immunotherapy in patients with advanced non-small cell lung cancer (NSCLC) and to construct a nomogram prediction model to provide reference for clinical work.<br/><strong>Patients and Methods:</strong> Patients with advanced NSCLC who received ICIs treatment in Qingdao Municipal Hospital from January 2019 to December 2021 were selected as the study subjects. The chi-square test, Kaplan-Meier survival analysis, and Cox proportional risk regression analysis were used to evaluate the prognosis. The results were visualized by a nomogram, and the performance of the model was judged by indicators such as the area under the subject operating characteristic curve (AUC) and C-index. The patients were divided into high- and low-risk groups by PILE score, and the prognosis of patients in different risk groups was evaluated.<br/><strong>Results:</strong> Multivariate Cox regression analysis showed that immune-related adverse events (irAEs) were prognostic factors for overall survival (OS) improvement, and ECOG PS score ≥ 2, bone metastases before treatment, and high PIV expression were independent risk factors for OS. The C index of OS predicted by the nomogram model is 0.750 (95% CI: 0.677– 0.823), and the Calibration and ROC curves show that the model has good prediction performance. Compared with the low-risk group, patients in the high-risk group of PILE were associated with a higher inflammatory state and poorer physical condition, which often resulted in a poorer prognosis.<br/><strong>Conclusion:</strong> PIV can be used as a prognostic indicator for patients with advanced NSCLC treated with ICIs, and a nomogram prediction model can be constructed to evaluate the survival prediction of patients, thus contributing to better clinical decision-making and prognosis assessment.<br/><br/><strong>Keywords:</strong> non-small cell lung cancer, immune checkpoint inhibitors, pan-immune-inflammation value, prognosis, nomogram<br/>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"89 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/cmar.s461964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: The purpose of this study was to investigate the predictive value of Pan-Immune-Inflammation Value (PIV) combined with the PILE score for immunotherapy in patients with advanced non-small cell lung cancer (NSCLC) and to construct a nomogram prediction model to provide reference for clinical work. Patients and Methods: Patients with advanced NSCLC who received ICIs treatment in Qingdao Municipal Hospital from January 2019 to December 2021 were selected as the study subjects. The chi-square test, Kaplan-Meier survival analysis, and Cox proportional risk regression analysis were used to evaluate the prognosis. The results were visualized by a nomogram, and the performance of the model was judged by indicators such as the area under the subject operating characteristic curve (AUC) and C-index. The patients were divided into high- and low-risk groups by PILE score, and the prognosis of patients in different risk groups was evaluated. Results: Multivariate Cox regression analysis showed that immune-related adverse events (irAEs) were prognostic factors for overall survival (OS) improvement, and ECOG PS score ≥ 2, bone metastases before treatment, and high PIV expression were independent risk factors for OS. The C index of OS predicted by the nomogram model is 0.750 (95% CI: 0.677– 0.823), and the Calibration and ROC curves show that the model has good prediction performance. Compared with the low-risk group, patients in the high-risk group of PILE were associated with a higher inflammatory state and poorer physical condition, which often resulted in a poorer prognosis. Conclusion: PIV can be used as a prognostic indicator for patients with advanced NSCLC treated with ICIs, and a nomogram prediction model can be constructed to evaluate the survival prediction of patients, thus contributing to better clinical decision-making and prognosis assessment.