Li Wang, Heng-Bo Zhang, Rongrong Hu, Han-Qing Ge, Yong-Hong Song, Guo-Qing Yang, Yuefeng Li, Zhao-Tie Liu and Zhong-Wen Liu
{"title":"Bridging the structural gap of supported vanadium oxides for oxidative dehydrogenation of propane with carbon dioxide†","authors":"Li Wang, Heng-Bo Zhang, Rongrong Hu, Han-Qing Ge, Yong-Hong Song, Guo-Qing Yang, Yuefeng Li, Zhao-Tie Liu and Zhong-Wen Liu","doi":"10.1039/D4EY00094C","DOIUrl":null,"url":null,"abstract":"<p >As an extensively used industrial catalyst for oxidation reactions, supported vanadium oxide (VO<small><sub><em>x</em></sub></small>) is a promising candidate for oxidative dehydrogenation of propane with carbon dioxide (CO<small><sub>2</sub></small>-ODP). Although the structure of VO<small><sub><em>x</em></sub></small> is found to be a key factor in determining the catalytic activity and stability of supported VO<small><sub><em>x</em></sub></small> for CO<small><sub>2</sub></small>-ODP, the essential reason still remains elusive at the molecular level. To shed some light on this fundamental issue, VO<small><sub><em>x</em></sub></small>/(−)SiO<small><sub>2</sub></small> catalysts with narrow distributions of V loading while well-defined structures of VO<small><sub><em>x</em></sub></small> species, <em>i.e.</em>, monomeric VO<small><sub><em>x</em></sub></small>, less polymeric VO<small><sub><em>x</em></sub></small>, highly polymeric VO<small><sub><em>x</em></sub></small> and V<small><sub>2</sub></small>O<small><sub>5</sub></small> crystallites, were purposely synthesized by appropriate methods, including one-pot hydrothermal synthesis, incipient wetness impregnation and physical grinding. We found that the catalytic activity and stability of VO<small><sub><em>x</em></sub></small> species decrease in the order of monomeric VO<small><sub><em>x</em></sub></small> > less polymeric VO<small><sub><em>x</em></sub></small> > highly polymeric VO<small><sub><em>x</em></sub></small> > crystalline V<small><sub>2</sub></small>O<small><sub>5</sub></small>, which coincides with the ability for the re-oxidation of the correspondingly reduced VO<small><sub><em>x</em></sub></small> species by CO<small><sub>2</sub></small>. As a result of the most facile re-oxidation of the reduced monomeric VO<small><sub><em>x</em></sub></small> species by CO<small><sub>2</sub></small>, a well matched redox cycle of V<small><sup>5+</sup></small>/V<small><sup>4+</sup></small> oxides during CO<small><sub>2</sub></small>-ODP can be maintained with increasing the time on stream, leading to an improved stability of the catalyst with more monomeric VO<small><sub><em>x</em></sub></small>. These mechanistic findings on the redox properties of VO<small><sub><em>x</em></sub></small> with different structures can be guidelines for developing a high-performance VO<small><sub><em>x</em></sub></small>-based catalyst for CO<small><sub>2</sub></small>-ODP.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ey/d4ey00094c?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EES catalysis","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ey/d4ey00094c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
As an extensively used industrial catalyst for oxidation reactions, supported vanadium oxide (VOx) is a promising candidate for oxidative dehydrogenation of propane with carbon dioxide (CO2-ODP). Although the structure of VOx is found to be a key factor in determining the catalytic activity and stability of supported VOx for CO2-ODP, the essential reason still remains elusive at the molecular level. To shed some light on this fundamental issue, VOx/(−)SiO2 catalysts with narrow distributions of V loading while well-defined structures of VOx species, i.e., monomeric VOx, less polymeric VOx, highly polymeric VOx and V2O5 crystallites, were purposely synthesized by appropriate methods, including one-pot hydrothermal synthesis, incipient wetness impregnation and physical grinding. We found that the catalytic activity and stability of VOx species decrease in the order of monomeric VOx > less polymeric VOx > highly polymeric VOx > crystalline V2O5, which coincides with the ability for the re-oxidation of the correspondingly reduced VOx species by CO2. As a result of the most facile re-oxidation of the reduced monomeric VOx species by CO2, a well matched redox cycle of V5+/V4+ oxides during CO2-ODP can be maintained with increasing the time on stream, leading to an improved stability of the catalyst with more monomeric VOx. These mechanistic findings on the redox properties of VOx with different structures can be guidelines for developing a high-performance VOx-based catalyst for CO2-ODP.