Yu Jiang, Ruochen Wang, Dong Sun, Renkai Ding, Lin Yang
{"title":"Hybrid damping control of magnetorheological semi-active suspension based on feedback linearization Kalman observer","authors":"Yu Jiang, Ruochen Wang, Dong Sun, Renkai Ding, Lin Yang","doi":"10.1007/s11012-024-01827-w","DOIUrl":null,"url":null,"abstract":"<div><p>To improve the dynamic performances of nonlinear magnetorheological (MR) semi-active suspension, a hybrid damping control (HDC) based on Kalman observer of nonlinear suspension system is proposed. Firstly, the mechanical test of MR damper is carried out, and the mechanical model of MR damper and suspension system model are established. On this basis, a feedback linearization Kalman observer (FLKO) based on differential geometry theory is designed. Then, the working modes of the MR suspension system are divided according to different driving roads. HDC is proposed to achieve the dynamic control objectives under different working modes, and genetic algorithm is used to optimize the coefficients of skyhook, groundhook and distribution. The simulation results show that the estimation accuracy of FLKO is more than 85%. Compared with passive suspension, the tire dynamic load is optimized by 15.53% on A class road, improving the road holding. On B class road, the body acceleration, suspension deflection and tire dynamic load are optimized by 2.22%, 23.76% and 1.47% respectively, optimizing the dynamic performances comprehensively. On C class road, the body acceleration is optimized by 17.69%, improving the ride comfort effectively. Finally, a test bench is built, and the test results are basically consistent with simulation, which verifies the effectiveness of the designed FLKO and HDC.</p></div>","PeriodicalId":695,"journal":{"name":"Meccanica","volume":"59 7","pages":"1087 - 1102"},"PeriodicalIF":1.9000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meccanica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11012-024-01827-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
To improve the dynamic performances of nonlinear magnetorheological (MR) semi-active suspension, a hybrid damping control (HDC) based on Kalman observer of nonlinear suspension system is proposed. Firstly, the mechanical test of MR damper is carried out, and the mechanical model of MR damper and suspension system model are established. On this basis, a feedback linearization Kalman observer (FLKO) based on differential geometry theory is designed. Then, the working modes of the MR suspension system are divided according to different driving roads. HDC is proposed to achieve the dynamic control objectives under different working modes, and genetic algorithm is used to optimize the coefficients of skyhook, groundhook and distribution. The simulation results show that the estimation accuracy of FLKO is more than 85%. Compared with passive suspension, the tire dynamic load is optimized by 15.53% on A class road, improving the road holding. On B class road, the body acceleration, suspension deflection and tire dynamic load are optimized by 2.22%, 23.76% and 1.47% respectively, optimizing the dynamic performances comprehensively. On C class road, the body acceleration is optimized by 17.69%, improving the ride comfort effectively. Finally, a test bench is built, and the test results are basically consistent with simulation, which verifies the effectiveness of the designed FLKO and HDC.
期刊介绍:
Meccanica focuses on the methodological framework shared by mechanical scientists when addressing theoretical or applied problems. Original papers address various aspects of mechanical and mathematical modeling, of solution, as well as of analysis of system behavior. The journal explores fundamental and applications issues in established areas of mechanics research as well as in emerging fields; contemporary research on general mechanics, solid and structural mechanics, fluid mechanics, and mechanics of machines; interdisciplinary fields between mechanics and other mathematical and engineering sciences; interaction of mechanics with dynamical systems, advanced materials, control and computation; electromechanics; biomechanics.
Articles include full length papers; topical overviews; brief notes; discussions and comments on published papers; book reviews; and an international calendar of conferences.
Meccanica, the official journal of the Italian Association of Theoretical and Applied Mechanics, was established in 1966.