\(q-\)Bézier Curves with Shifted Nodes

IF 1.4 4区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES
Jaspreet Kaur, Meenu Goyal
{"title":"\\(q-\\)Bézier Curves with Shifted Nodes","authors":"Jaspreet Kaur,&nbsp;Meenu Goyal","doi":"10.1007/s40995-024-01653-5","DOIUrl":null,"url":null,"abstract":"<div><p>This article explores the applications of <i>q</i>-calculus in polynomial basis functions and curve modeling. We define the properties of <i>q</i>-Bernstein Cholodowsky basis polynomials. A novel approach to Bézier curves is introduced, utilizing basis polynomials to create generalized curves with shape-preserving properties. Additionally, the article presents degree elevation and De Casteljau algorithms tailored for these curves.</p></div>","PeriodicalId":600,"journal":{"name":"Iranian Journal of Science and Technology, Transactions A: Science","volume":"48 6","pages":"1551 - 1560"},"PeriodicalIF":1.4000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Science and Technology, Transactions A: Science","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s40995-024-01653-5","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This article explores the applications of q-calculus in polynomial basis functions and curve modeling. We define the properties of q-Bernstein Cholodowsky basis polynomials. A novel approach to Bézier curves is introduced, utilizing basis polynomials to create generalized curves with shape-preserving properties. Additionally, the article presents degree elevation and De Casteljau algorithms tailored for these curves.

Abstract Image

具有偏移节点的 $$q-$ 贝塞尔曲线
本文探讨了 q 微积分在多项式基函数和曲线建模中的应用。我们定义了 q-Bernstein Cholodowsky 基多项式的性质。文章介绍了贝塞尔曲线的一种新方法,即利用基多项式创建具有形状保持特性的广义曲线。此外,文章还介绍了为这些曲线量身定制的度提升和 De Casteljau 算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.00
自引率
5.90%
发文量
122
审稿时长
>12 weeks
期刊介绍: The aim of this journal is to foster the growth of scientific research among Iranian scientists and to provide a medium which brings the fruits of their research to the attention of the world’s scientific community. The journal publishes original research findings – which may be theoretical, experimental or both - reviews, techniques, and comments spanning all subjects in the field of basic sciences, including Physics, Chemistry, Mathematics, Statistics, Biology and Earth Sciences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信