{"title":"Primitively 2-universal senary integral quadratic forms","authors":"Byeong-Kweon Oh , Jongheun Yoon","doi":"10.1016/j.jnt.2024.05.006","DOIUrl":null,"url":null,"abstract":"<div><p>For a positive integer <em>m</em>, a (positive definite integral) quadratic form is called primitively <em>m</em>-universal if it primitively represents all quadratic forms of rank <em>m</em>. It was proved in <span>[9]</span> that there are exactly 107 equivalence classes of primitively 1-universal quaternary quadratic forms. In this article, we prove that the minimal rank of primitively 2-universal quadratic forms is six, and there are exactly 201 equivalence classes of primitively 2-universal senary quadratic forms.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X24001379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
For a positive integer m, a (positive definite integral) quadratic form is called primitively m-universal if it primitively represents all quadratic forms of rank m. It was proved in [9] that there are exactly 107 equivalence classes of primitively 1-universal quaternary quadratic forms. In this article, we prove that the minimal rank of primitively 2-universal quadratic forms is six, and there are exactly 201 equivalence classes of primitively 2-universal senary quadratic forms.