{"title":"Generalisations of multiple zeta values to rooted forests","authors":"Pierre J. Clavier , Dorian Perrot","doi":"10.1016/j.jnt.2024.05.008","DOIUrl":null,"url":null,"abstract":"<div><p>We show that any convergent (shuffle) arborified zeta value admits a series representation. This justifies the introduction of a new generalisation to rooted forests of multiple zeta values, and we study its algebraic properties. As a consequence of the series representation, we derive elementary proofs of some results of Bradley and Zhou for Mordell-Tornheim zeta values and give explicit formulas. The series representation for shuffle arborified zeta values also implies that they are conical zeta values. We characterise which conical zeta values are arborified zeta values and evaluate them as sums of multiple zeta values with rational coefficients.</p></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"264 ","pages":"Pages 233-276"},"PeriodicalIF":0.6000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X24001380","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We show that any convergent (shuffle) arborified zeta value admits a series representation. This justifies the introduction of a new generalisation to rooted forests of multiple zeta values, and we study its algebraic properties. As a consequence of the series representation, we derive elementary proofs of some results of Bradley and Zhou for Mordell-Tornheim zeta values and give explicit formulas. The series representation for shuffle arborified zeta values also implies that they are conical zeta values. We characterise which conical zeta values are arborified zeta values and evaluate them as sums of multiple zeta values with rational coefficients.
期刊介绍:
The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field.
The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory.
Starting in May 2019, JNT will have a new format with 3 sections:
JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access.
JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions.
Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.