{"title":"Ideal class groups of division fields of elliptic curves and everywhere unramified rational points","authors":"Naoto Dainobu","doi":"10.1016/j.jnt.2024.05.007","DOIUrl":null,"url":null,"abstract":"<div><p>Let <em>E</em> be an elliptic curve over <span><math><mi>Q</mi></math></span>, <em>p</em> an odd prime number and <em>n</em> a positive integer. In this article, we investigate the ideal class group <span><math><mrow><mi>Cl</mi></mrow><mo>(</mo><mi>Q</mi><mo>(</mo><mi>E</mi><mo>[</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>]</mo><mo>)</mo><mo>)</mo></math></span> of the <span><math><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>-division field <span><math><mi>Q</mi><mo>(</mo><mi>E</mi><mo>[</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>]</mo><mo>)</mo></math></span> of <em>E</em>. We introduce a certain subgroup <span><math><mi>E</mi><msub><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow><mrow><mrow><mi>ur</mi></mrow><mo>,</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span> of <span><math><mi>E</mi><mo>(</mo><mi>Q</mi><mo>)</mo></math></span> and study the <em>p</em>-adic valuation of the class number <span><math><mi>#</mi><mrow><mi>Cl</mi></mrow><mo>(</mo><mi>Q</mi><mo>(</mo><mi>E</mi><mo>[</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>]</mo><mo>)</mo><mo>)</mo></math></span>.</p><p>In addition, when <span><math><mi>n</mi><mo>=</mo><mn>1</mn></math></span>, we further study <span><math><mrow><mi>Cl</mi></mrow><mo>(</mo><mi>Q</mi><mo>(</mo><mi>E</mi><mo>[</mo><mi>p</mi><mo>]</mo><mo>)</mo><mo>)</mo></math></span> as a <span><math><mi>Gal</mi><mo>(</mo><mi>Q</mi><mo>(</mo><mi>E</mi><mo>[</mo><mi>p</mi><mo>]</mo><mo>)</mo><mo>/</mo><mi>Q</mi><mo>)</mo></math></span>-module. More precisely, we study the semi-simplification <span><math><msup><mrow><mo>(</mo><mrow><mi>Cl</mi></mrow><mo>(</mo><mi>Q</mi><mo>(</mo><mi>E</mi><mo>[</mo><mi>p</mi><mo>]</mo><mo>)</mo><mo>)</mo><mo>⊗</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>ss</mi></mrow></msup></math></span> of <span><math><mrow><mi>Cl</mi></mrow><mo>(</mo><mi>Q</mi><mo>(</mo><mi>E</mi><mo>[</mo><mi>p</mi><mo>]</mo><mo>)</mo><mo>)</mo><mo>⊗</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> as a <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>[</mo><mi>Gal</mi><mo>(</mo><mi>Q</mi><mo>(</mo><mi>E</mi><mo>[</mo><mi>p</mi><mo>]</mo><mo>)</mo><mo>/</mo><mi>Q</mi><mo>)</mo><mo>]</mo></math></span>-module. We obtain a lower bound of the multiplicity of the <span><math><mi>E</mi><mo>[</mo><mi>p</mi><mo>]</mo></math></span>-component in the semi-simplification when <span><math><mi>E</mi><mo>[</mo><mi>p</mi><mo>]</mo></math></span> is an irreducible <span><math><mi>Gal</mi><mo>(</mo><mi>Q</mi><mo>(</mo><mi>E</mi><mo>[</mo><mi>p</mi><mo>]</mo><mo>)</mo><mo>/</mo><mi>Q</mi><mo>)</mo></math></span>-module.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X24001434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let E be an elliptic curve over , p an odd prime number and n a positive integer. In this article, we investigate the ideal class group of the -division field of E. We introduce a certain subgroup of and study the p-adic valuation of the class number .
In addition, when , we further study as a -module. More precisely, we study the semi-simplification of as a -module. We obtain a lower bound of the multiplicity of the -component in the semi-simplification when is an irreducible -module.