Ideal class groups of division fields of elliptic curves and everywhere unramified rational points

Pub Date : 2024-06-25 DOI:10.1016/j.jnt.2024.05.007
Naoto Dainobu
{"title":"Ideal class groups of division fields of elliptic curves and everywhere unramified rational points","authors":"Naoto Dainobu","doi":"10.1016/j.jnt.2024.05.007","DOIUrl":null,"url":null,"abstract":"<div><p>Let <em>E</em> be an elliptic curve over <span><math><mi>Q</mi></math></span>, <em>p</em> an odd prime number and <em>n</em> a positive integer. In this article, we investigate the ideal class group <span><math><mrow><mi>Cl</mi></mrow><mo>(</mo><mi>Q</mi><mo>(</mo><mi>E</mi><mo>[</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>]</mo><mo>)</mo><mo>)</mo></math></span> of the <span><math><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>-division field <span><math><mi>Q</mi><mo>(</mo><mi>E</mi><mo>[</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>]</mo><mo>)</mo></math></span> of <em>E</em>. We introduce a certain subgroup <span><math><mi>E</mi><msub><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow><mrow><mrow><mi>ur</mi></mrow><mo>,</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span> of <span><math><mi>E</mi><mo>(</mo><mi>Q</mi><mo>)</mo></math></span> and study the <em>p</em>-adic valuation of the class number <span><math><mi>#</mi><mrow><mi>Cl</mi></mrow><mo>(</mo><mi>Q</mi><mo>(</mo><mi>E</mi><mo>[</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>]</mo><mo>)</mo><mo>)</mo></math></span>.</p><p>In addition, when <span><math><mi>n</mi><mo>=</mo><mn>1</mn></math></span>, we further study <span><math><mrow><mi>Cl</mi></mrow><mo>(</mo><mi>Q</mi><mo>(</mo><mi>E</mi><mo>[</mo><mi>p</mi><mo>]</mo><mo>)</mo><mo>)</mo></math></span> as a <span><math><mi>Gal</mi><mo>(</mo><mi>Q</mi><mo>(</mo><mi>E</mi><mo>[</mo><mi>p</mi><mo>]</mo><mo>)</mo><mo>/</mo><mi>Q</mi><mo>)</mo></math></span>-module. More precisely, we study the semi-simplification <span><math><msup><mrow><mo>(</mo><mrow><mi>Cl</mi></mrow><mo>(</mo><mi>Q</mi><mo>(</mo><mi>E</mi><mo>[</mo><mi>p</mi><mo>]</mo><mo>)</mo><mo>)</mo><mo>⊗</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>ss</mi></mrow></msup></math></span> of <span><math><mrow><mi>Cl</mi></mrow><mo>(</mo><mi>Q</mi><mo>(</mo><mi>E</mi><mo>[</mo><mi>p</mi><mo>]</mo><mo>)</mo><mo>)</mo><mo>⊗</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> as a <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>[</mo><mi>Gal</mi><mo>(</mo><mi>Q</mi><mo>(</mo><mi>E</mi><mo>[</mo><mi>p</mi><mo>]</mo><mo>)</mo><mo>/</mo><mi>Q</mi><mo>)</mo><mo>]</mo></math></span>-module. We obtain a lower bound of the multiplicity of the <span><math><mi>E</mi><mo>[</mo><mi>p</mi><mo>]</mo></math></span>-component in the semi-simplification when <span><math><mi>E</mi><mo>[</mo><mi>p</mi><mo>]</mo></math></span> is an irreducible <span><math><mi>Gal</mi><mo>(</mo><mi>Q</mi><mo>(</mo><mi>E</mi><mo>[</mo><mi>p</mi><mo>]</mo><mo>)</mo><mo>/</mo><mi>Q</mi><mo>)</mo></math></span>-module.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X24001434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let E be an elliptic curve over Q, p an odd prime number and n a positive integer. In this article, we investigate the ideal class group Cl(Q(E[pn])) of the pn-division field Q(E[pn]) of E. We introduce a certain subgroup E(Q)ur,pn of E(Q) and study the p-adic valuation of the class number #Cl(Q(E[pn])).

In addition, when n=1, we further study Cl(Q(E[p])) as a Gal(Q(E[p])/Q)-module. More precisely, we study the semi-simplification (Cl(Q(E[p]))Zp)ss of Cl(Q(E[p]))Zp as a Zp[Gal(Q(E[p])/Q)]-module. We obtain a lower bound of the multiplicity of the E[p]-component in the semi-simplification when E[p] is an irreducible Gal(Q(E[p])/Q)-module.

分享
查看原文
椭圆曲线划分域的理想类群和无处不ramified 的有理点
设 是一条椭圆曲线,一个奇素数和一个正整数。在这篇文章中,我们研究了.的-划分域的理想类群。 我们引入了.的某个子群,并研究了类数.的-adic估值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信