{"title":"Quadratic base change and resonance sums for holomorphic cusp forms on Γ0(N)","authors":"Timothy Gillespie","doi":"10.1016/j.jnt.2024.05.011","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>D</mi><mo>,</mo><mi>k</mi></math></span> be integers with <em>D</em> square free and <em>k</em> even. Let <em>N</em> be a positive integer so that <span><math><mo>(</mo><mi>N</mi><mo>,</mo><mi>D</mi><mo>)</mo><mo>=</mo><mn>1</mn></math></span> when <em>D</em> has residue one modulo four and <span><math><mo>(</mo><mi>N</mi><mo>,</mo><mn>4</mn><mi>D</mi><mo>)</mo><mo>=</mo><mn>1</mn></math></span> when <em>D</em> has residue two or three modulo four. In this paper the asymptotic behavior of a resonance sum <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>;</mo><mi>π</mi><mo>)</mo></math></span> attached to the quadratic base change lift of a holomorphic cusp form <em>f</em> of level <em>N</em> and weight <em>k</em> over the quadratic extension generated by <span><math><msqrt><mrow><mi>D</mi></mrow></msqrt></math></span> is computed. First a Voronoi summation formula is derived that expresses <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>;</mo><mi>π</mi><mo>)</mo></math></span> in terms of the Meier-G function. Then, using the known asymptotics of the Meier-G function the asymptotic behavior of <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>;</mo><mi>π</mi><mo>)</mo></math></span> as <em>X</em> approaches infinity is determined. It is then shown that using only finitely many Fourier coefficients of the form, one can recover the weight <em>k</em> and the level <em>N</em>, which is a special case of the multiplicity one theorem.</p></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"264 ","pages":"Pages 184-210"},"PeriodicalIF":0.6000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X24001409","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let be integers with D square free and k even. Let N be a positive integer so that when D has residue one modulo four and when D has residue two or three modulo four. In this paper the asymptotic behavior of a resonance sum attached to the quadratic base change lift of a holomorphic cusp form f of level N and weight k over the quadratic extension generated by is computed. First a Voronoi summation formula is derived that expresses in terms of the Meier-G function. Then, using the known asymptotics of the Meier-G function the asymptotic behavior of as X approaches infinity is determined. It is then shown that using only finitely many Fourier coefficients of the form, one can recover the weight k and the level N, which is a special case of the multiplicity one theorem.
期刊介绍:
The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field.
The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory.
Starting in May 2019, JNT will have a new format with 3 sections:
JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access.
JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions.
Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.