Quadratic base change and resonance sums for holomorphic cusp forms on Γ0(N)

IF 0.6 3区 数学 Q3 MATHEMATICS
Timothy Gillespie
{"title":"Quadratic base change and resonance sums for holomorphic cusp forms on Γ0(N)","authors":"Timothy Gillespie","doi":"10.1016/j.jnt.2024.05.011","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>D</mi><mo>,</mo><mi>k</mi></math></span> be integers with <em>D</em> square free and <em>k</em> even. Let <em>N</em> be a positive integer so that <span><math><mo>(</mo><mi>N</mi><mo>,</mo><mi>D</mi><mo>)</mo><mo>=</mo><mn>1</mn></math></span> when <em>D</em> has residue one modulo four and <span><math><mo>(</mo><mi>N</mi><mo>,</mo><mn>4</mn><mi>D</mi><mo>)</mo><mo>=</mo><mn>1</mn></math></span> when <em>D</em> has residue two or three modulo four. In this paper the asymptotic behavior of a resonance sum <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>;</mo><mi>π</mi><mo>)</mo></math></span> attached to the quadratic base change lift of a holomorphic cusp form <em>f</em> of level <em>N</em> and weight <em>k</em> over the quadratic extension generated by <span><math><msqrt><mrow><mi>D</mi></mrow></msqrt></math></span> is computed. First a Voronoi summation formula is derived that expresses <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>;</mo><mi>π</mi><mo>)</mo></math></span> in terms of the Meier-G function. Then, using the known asymptotics of the Meier-G function the asymptotic behavior of <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>;</mo><mi>π</mi><mo>)</mo></math></span> as <em>X</em> approaches infinity is determined. It is then shown that using only finitely many Fourier coefficients of the form, one can recover the weight <em>k</em> and the level <em>N</em>, which is a special case of the multiplicity one theorem.</p></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"264 ","pages":"Pages 184-210"},"PeriodicalIF":0.6000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X24001409","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let D,k be integers with D square free and k even. Let N be a positive integer so that (N,D)=1 when D has residue one modulo four and (N,4D)=1 when D has residue two or three modulo four. In this paper the asymptotic behavior of a resonance sum SX(α,β;π) attached to the quadratic base change lift of a holomorphic cusp form f of level N and weight k over the quadratic extension generated by D is computed. First a Voronoi summation formula is derived that expresses SX(α,β;π) in terms of the Meier-G function. Then, using the known asymptotics of the Meier-G function the asymptotic behavior of SX(α,β;π) as X approaches infinity is determined. It is then shown that using only finitely many Fourier coefficients of the form, one can recover the weight k and the level N, which is a special case of the multiplicity one theorem.

Γ0(N)上全形尖顶形式的二次基变和共振和
设为无平方和偶数的整数。设为正整数,则 when 的余数为 1,且 when 的余数为 2 或 3,且 when 的余数为 4。在本文中,我们计算了一个全形尖顶形式的级数和权重在由其生成的二次扩展上的二次基变提升所附共振和的渐近行为。首先推导出一个用 Meier-G 函数表示的 Voronoi 求和公式。然后,利用已知的 Meier-G 函数渐近线,确定接近无穷大时的渐近行为。然后证明,只需使用有限个傅里叶系数的形式,就能恢复权重和水平,这是乘数一定理的一个特例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Number Theory
Journal of Number Theory 数学-数学
CiteScore
1.30
自引率
14.30%
发文量
122
审稿时长
16 weeks
期刊介绍: The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field. The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory. Starting in May 2019, JNT will have a new format with 3 sections: JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access. JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions. Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信