{"title":"Sparse distribution of lattice points in annular regions","authors":"Yanqiu Guo, Michael Ilyin","doi":"10.1016/j.jnt.2024.05.009","DOIUrl":null,"url":null,"abstract":"<div><p>This paper is inspired by Richards' work on large gaps between sums of two squares <span>[10]</span>. It is shown in <span>[10]</span> that there exist arbitrarily large values of <em>λ</em> and <em>μ</em>, where <span><math><mi>μ</mi><mo>≥</mo><mi>C</mi><mi>log</mi><mo></mo><mi>λ</mi></math></span>, such that intervals <span><math><mo>[</mo><mi>λ</mi><mo>,</mo><mspace></mspace><mi>λ</mi><mo>+</mo><mi>μ</mi><mo>]</mo></math></span> do not contain any sums of two squares. Geometrically, these gaps between sums of two squares correspond to annuli in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> that do not contain any integer lattice points. A major objective of this paper is to investigate the sparse distribution of integer lattice points within annular regions in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. Specifically, we establish the existence of annuli <span><math><mo>{</mo><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>:</mo><mi>λ</mi><mo>≤</mo><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>≤</mo><mi>λ</mi><mo>+</mo><mi>κ</mi><mo>}</mo></math></span> with arbitrarily large <em>λ</em> and <span><math><mi>κ</mi><mo>≥</mo><mi>C</mi><msup><mrow><mi>λ</mi></mrow><mrow><mi>s</mi></mrow></msup></math></span> for <span><math><mn>0</mn><mo><</mo><mi>s</mi><mo><</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac></math></span>, satisfying that any two integer lattice points within any one of these annuli must be sufficiently far apart. This result is sharp, as such a property ceases to hold at and beyond the threshold <span><math><mi>s</mi><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac></math></span>. Furthermore, we extend our analysis to include the sparse distribution of lattice points in spherical shells in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X24001422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper is inspired by Richards' work on large gaps between sums of two squares [10]. It is shown in [10] that there exist arbitrarily large values of λ and μ, where , such that intervals do not contain any sums of two squares. Geometrically, these gaps between sums of two squares correspond to annuli in that do not contain any integer lattice points. A major objective of this paper is to investigate the sparse distribution of integer lattice points within annular regions in . Specifically, we establish the existence of annuli with arbitrarily large λ and for , satisfying that any two integer lattice points within any one of these annuli must be sufficiently far apart. This result is sharp, as such a property ceases to hold at and beyond the threshold . Furthermore, we extend our analysis to include the sparse distribution of lattice points in spherical shells in .