Sparse distribution of lattice points in annular regions

Pub Date : 2024-06-25 DOI:10.1016/j.jnt.2024.05.009
Yanqiu Guo, Michael Ilyin
{"title":"Sparse distribution of lattice points in annular regions","authors":"Yanqiu Guo,&nbsp;Michael Ilyin","doi":"10.1016/j.jnt.2024.05.009","DOIUrl":null,"url":null,"abstract":"<div><p>This paper is inspired by Richards' work on large gaps between sums of two squares <span>[10]</span>. It is shown in <span>[10]</span> that there exist arbitrarily large values of <em>λ</em> and <em>μ</em>, where <span><math><mi>μ</mi><mo>≥</mo><mi>C</mi><mi>log</mi><mo>⁡</mo><mi>λ</mi></math></span>, such that intervals <span><math><mo>[</mo><mi>λ</mi><mo>,</mo><mspace></mspace><mi>λ</mi><mo>+</mo><mi>μ</mi><mo>]</mo></math></span> do not contain any sums of two squares. Geometrically, these gaps between sums of two squares correspond to annuli in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> that do not contain any integer lattice points. A major objective of this paper is to investigate the sparse distribution of integer lattice points within annular regions in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. Specifically, we establish the existence of annuli <span><math><mo>{</mo><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>:</mo><mi>λ</mi><mo>≤</mo><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>≤</mo><mi>λ</mi><mo>+</mo><mi>κ</mi><mo>}</mo></math></span> with arbitrarily large <em>λ</em> and <span><math><mi>κ</mi><mo>≥</mo><mi>C</mi><msup><mrow><mi>λ</mi></mrow><mrow><mi>s</mi></mrow></msup></math></span> for <span><math><mn>0</mn><mo>&lt;</mo><mi>s</mi><mo>&lt;</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac></math></span>, satisfying that any two integer lattice points within any one of these annuli must be sufficiently far apart. This result is sharp, as such a property ceases to hold at and beyond the threshold <span><math><mi>s</mi><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac></math></span>. Furthermore, we extend our analysis to include the sparse distribution of lattice points in spherical shells in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X24001422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is inspired by Richards' work on large gaps between sums of two squares [10]. It is shown in [10] that there exist arbitrarily large values of λ and μ, where μClogλ, such that intervals [λ,λ+μ] do not contain any sums of two squares. Geometrically, these gaps between sums of two squares correspond to annuli in R2 that do not contain any integer lattice points. A major objective of this paper is to investigate the sparse distribution of integer lattice points within annular regions in R2. Specifically, we establish the existence of annuli {xR2:λ|x|2λ+κ} with arbitrarily large λ and κCλs for 0<s<14, satisfying that any two integer lattice points within any one of these annuli must be sufficiently far apart. This result is sharp, as such a property ceases to hold at and beyond the threshold s=14. Furthermore, we extend our analysis to include the sparse distribution of lattice points in spherical shells in R3.

分享
查看原文
环形区域中网格点的稀疏分布
本文的灵感来自理查兹关于两个平方之和之间的大间隙的研究。研究表明,存在任意大的 和 值,其中 , ,使得区间不包含任何两个正方形之和。从几何学角度看,这些两个正方形之和之间的间隙对应于不包含任何整数网格点的环面。本文的一个主要目的是研究环形区域内整数网格点的稀疏分布。具体地说,我们确定了存在任意大的 和 的环形区域,这些环形区域内的任意两个整数网格点必须相距足够远。这一结果是尖锐的,因为在临界值为 和 时,这一性质不再成立。此外,我们还扩展了分析范围,将球壳中网格点的稀疏分布也包括在内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信