{"title":"Degeneracy loci in the universal family of Abelian varieties","authors":"Ziyang Gao, Philipp Habegger","doi":"10.1016/j.jnt.2024.05.015","DOIUrl":null,"url":null,"abstract":"Recent developments on the uniformity of the number of rational points on curves and subvarieties in a moving abelian variety rely on the geometric concept of the degeneracy locus. The first-named author investigated the degeneracy locus in certain mixed Shimura varieties. In this expository note we revisit some of these results while minimizing the use of mixed Shimura varieties while working in a family of principally polarized abelian varieties. We also explain their relevance for applications in diophantine geometry.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.jnt.2024.05.015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Recent developments on the uniformity of the number of rational points on curves and subvarieties in a moving abelian variety rely on the geometric concept of the degeneracy locus. The first-named author investigated the degeneracy locus in certain mixed Shimura varieties. In this expository note we revisit some of these results while minimizing the use of mixed Shimura varieties while working in a family of principally polarized abelian varieties. We also explain their relevance for applications in diophantine geometry.