The Solar Origin of an Intense Geomagnetic Storm on 1 December 2023: Successive Slipping and Eruption of Multiple Magnetic Flux Ropes

IF 2.7 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Zheng Sun, Ting Li, Yijun Hou, Hui Tian, Ziqi Wu, Ke Li, Yining Zhang, Zhentong Li, Xianyong Bai, Li Feng, Chuan Li, Zhenyong Hou, Qiao Song, Jingsong Wang, Guiping Zhou
{"title":"The Solar Origin of an Intense Geomagnetic Storm on 1 December 2023: Successive Slipping and Eruption of Multiple Magnetic Flux Ropes","authors":"Zheng Sun,&nbsp;Ting Li,&nbsp;Yijun Hou,&nbsp;Hui Tian,&nbsp;Ziqi Wu,&nbsp;Ke Li,&nbsp;Yining Zhang,&nbsp;Zhentong Li,&nbsp;Xianyong Bai,&nbsp;Li Feng,&nbsp;Chuan Li,&nbsp;Zhenyong Hou,&nbsp;Qiao Song,&nbsp;Jingsong Wang,&nbsp;Guiping Zhou","doi":"10.1007/s11207-024-02329-4","DOIUrl":null,"url":null,"abstract":"<div><p>The solar eruption that occurred on 28 November 2023 (SOL2023-11-28) triggered an intense geomagnetic storm on 1 December 2023. The associated terrestrial auroras manifested at the most southern latitudes in the northern hemisphere observed in the past two decades. In order to explore the profound geoeffectiveness of this event, we conducted a comprehensive analysis of its solar origin to offer potential factors contributing to its impact. Magnetic flux ropes (MFRs) are twisted magnetic structures recognized as significant contributors to coronal mass ejections (CMEs), thereby impacting space weather greatly. In this event, we identified multiple MFRs in the solar active region and observed distinct slipping processes of the three MFRs: MFR1, MFR2, and MFR3. All three MFRs exhibit slipping motions at a speed of 40 – 137 km s<sup>−1</sup>, extending beyond their original locations. Notably, the slipping of MFR2 extends to <span>\\(\\sim 30\\text{ Mm}\\)</span> and initiates the eruption of MFR3. Ultimately, MFR1’s eruption results in an M3.4-class flare and a CME, while MFR2 and MFR3 collectively produce an M9.8-class flare and another halo CME. This study shows the slipping process in a multi-MFR system, showing how one MFR’s slipping can trigger the eruption of another MFR. We propose that the CME–CME interactions caused by multiple MFR eruptions may contribute to the significant geoeffectiveness.</p></div>","PeriodicalId":777,"journal":{"name":"Solar Physics","volume":"299 6","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11207-024-02329-4","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The solar eruption that occurred on 28 November 2023 (SOL2023-11-28) triggered an intense geomagnetic storm on 1 December 2023. The associated terrestrial auroras manifested at the most southern latitudes in the northern hemisphere observed in the past two decades. In order to explore the profound geoeffectiveness of this event, we conducted a comprehensive analysis of its solar origin to offer potential factors contributing to its impact. Magnetic flux ropes (MFRs) are twisted magnetic structures recognized as significant contributors to coronal mass ejections (CMEs), thereby impacting space weather greatly. In this event, we identified multiple MFRs in the solar active region and observed distinct slipping processes of the three MFRs: MFR1, MFR2, and MFR3. All three MFRs exhibit slipping motions at a speed of 40 – 137 km s−1, extending beyond their original locations. Notably, the slipping of MFR2 extends to \(\sim 30\text{ Mm}\) and initiates the eruption of MFR3. Ultimately, MFR1’s eruption results in an M3.4-class flare and a CME, while MFR2 and MFR3 collectively produce an M9.8-class flare and another halo CME. This study shows the slipping process in a multi-MFR system, showing how one MFR’s slipping can trigger the eruption of another MFR. We propose that the CME–CME interactions caused by multiple MFR eruptions may contribute to the significant geoeffectiveness.

Abstract Image

2023 年 12 月 1 日强烈地磁暴的太阳起源:多条磁通量绳索的连续滑动和喷发
2023 年 11 月 28 日发生的太阳爆发(SOL2023-11-28)引发了 2023 年 12 月 1 日的强烈地磁暴。相关的地面极光出现在北半球过去二十年来观测到的最南端纬度。为了探索这一事件的深远地球效应,我们对其太阳起源进行了全面分析,以提供造成其影响的潜在因素。磁通量绳(MFRs)是一种扭曲的磁结构,被认为是日冕物质抛射(CMEs)的重要诱因,从而对空间天气产生巨大影响。在这次事件中,我们在太阳活动区域发现了多条磁通量绳,并观测到了三条磁通量绳不同的滑动过程:MFR1、MFR2 和 MFR3。这三个多脉冲反射器都以 40 - 137 千米/秒的速度滑动,超出了它们原来的位置。值得注意的是,MFR2的滑动延伸到了 \(\sim 30\text{ Mm}\),并引发了MFR3的喷发。最终,MFR1的爆发产生了一个M3.4级耀斑和一个CME,而MFR2和MFR3则共同产生了一个M9.8级耀斑和另一个光环CME。这项研究展示了多多FR系统的滑动过程,显示了一个多多FR的滑动如何触发另一个多多FR的爆发。我们认为,多块多脉冲反射区爆发引起的CME-CME相互作用可能是产生显著地球效应的原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solar Physics
Solar Physics 地学天文-天文与天体物理
CiteScore
5.10
自引率
17.90%
发文量
146
审稿时长
1 months
期刊介绍: Solar Physics was founded in 1967 and is the principal journal for the publication of the results of fundamental research on the Sun. The journal treats all aspects of solar physics, ranging from the internal structure of the Sun and its evolution to the outer corona and solar wind in interplanetary space. Papers on solar-terrestrial physics and on stellar research are also published when their results have a direct bearing on our understanding of the Sun.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信