{"title":"Analyzing user reactions using relevance between location information of tweets and news articles","authors":"Yun-Tae Jin, JaeBeom You, Shoko Wakamiya, Hyuk-Yoon Kwon","doi":"10.1140/epjds/s13688-024-00465-2","DOIUrl":null,"url":null,"abstract":"<p>In this study, we analyze the extent of user reactions based on user’s tweets to news articles, demonstrating the potential for home location prediction. To achieve this, we quantify users’ reactions to specific news articles based on the textual similarity between tweets and news articles, showcasing that users’ reactions to news articles about their cities are significantly higher than those about other cities. To maximize the difference in reactions, we introduce the concept of <i>News Distinctness</i>, which highlights the news articles that affect a specific location. By incorporating News Distinctness with users’ reactions to the news, we magnify its effects. Through experiments conducted with tweets collected from users whose home locations are in five representative cities within the United States and news articles describing events occurring in those cities, we observed a 6.75% to 40% improvement in the reaction score when compared to the average reactions towards news for outside of home location, clearly predicting the home location. Furthermore, News Distinctness increases the difference in reaction score between news in the home location and the average of the news outside of the home location by 12% to 194%. These results demonstrate that our proposed idea can be utilized to predict the users’ location, potentially recommending meaningful information based on the users’ areas of interest.</p>","PeriodicalId":11887,"journal":{"name":"EPJ Data Science","volume":"10 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Data Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1140/epjds/s13688-024-00465-2","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we analyze the extent of user reactions based on user’s tweets to news articles, demonstrating the potential for home location prediction. To achieve this, we quantify users’ reactions to specific news articles based on the textual similarity between tweets and news articles, showcasing that users’ reactions to news articles about their cities are significantly higher than those about other cities. To maximize the difference in reactions, we introduce the concept of News Distinctness, which highlights the news articles that affect a specific location. By incorporating News Distinctness with users’ reactions to the news, we magnify its effects. Through experiments conducted with tweets collected from users whose home locations are in five representative cities within the United States and news articles describing events occurring in those cities, we observed a 6.75% to 40% improvement in the reaction score when compared to the average reactions towards news for outside of home location, clearly predicting the home location. Furthermore, News Distinctness increases the difference in reaction score between news in the home location and the average of the news outside of the home location by 12% to 194%. These results demonstrate that our proposed idea can be utilized to predict the users’ location, potentially recommending meaningful information based on the users’ areas of interest.
期刊介绍:
EPJ Data Science covers a broad range of research areas and applications and particularly encourages contributions from techno-socio-economic systems, where it comprises those research lines that now regard the digital “tracks” of human beings as first-order objects for scientific investigation. Topics include, but are not limited to, human behavior, social interaction (including animal societies), economic and financial systems, management and business networks, socio-technical infrastructure, health and environmental systems, the science of science, as well as general risk and crisis scenario forecasting up to and including policy advice.