Resource utilization of oak fruit peel as biomass waste for the synthesis of carbon with graphene oxide-like composition and its composite with Mg1−xCaxFe2O4 for Cd(ii) removal from water: characterization, magnetic properties, and potential adsorption study†

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Younes Zohrabi, Mohammad Ebrahim Ghazi, Morteza Izadifard, Alireza Valipour and Sivasankaran Ayyaru
{"title":"Resource utilization of oak fruit peel as biomass waste for the synthesis of carbon with graphene oxide-like composition and its composite with Mg1−xCaxFe2O4 for Cd(ii) removal from water: characterization, magnetic properties, and potential adsorption study†","authors":"Younes Zohrabi, Mohammad Ebrahim Ghazi, Morteza Izadifard, Alireza Valipour and Sivasankaran Ayyaru","doi":"10.1039/D4EW00059E","DOIUrl":null,"url":null,"abstract":"<p >In this study, carbon with graphene oxide (GO)-like composition (C<small><sub>GO</sub></small>) was prepared from oak fruit peel (OFP) using a room-temperature method. C<small><sub>GO</sub></small> was decorated with sol–gel synthesized Mg<small><sub>1−<em>x</em></sub></small>Ca<small><sub><em>x</em></sub></small>Fe<small><sub>2</sub></small>O<small><sub>4</sub></small> (<em>x</em> = 0.2 (MCF2) and 0.8 (MCF8)) <em>via</em> a hydrothermal method to obtain C<small><sub>GO</sub></small>/MCF nanocomposites. The samples were characterized using XRD, RS, FTIR, FESEM, EDX, TEM, BET, and VSM analysis. C<small><sub>GO</sub></small>/MCF nanocomposites were assessed for their Cd<small><sup>2+</sup></small> adsorption capacity from aqueous solutions <em>via</em> flame AAS. Factors such as contact time (1–60 min); nanocomposite dose (0.002–0.01 g); initial Cd<small><sup>2+</sup></small> concentration (5–60 mg L<small><sup>−1</sup></small>); and coexisting ions of Pb<small><sup>2+</sup></small>, Co<small><sup>2+</sup></small>, and Ni<small><sup>2+</sup></small> (10 mg L<small><sup>−1</sup></small> each) at pH 7 were examined. The results indicated that the Cd<small><sup>2+</sup></small> adsorption capacity of C<small><sub>GO</sub></small>/MCF2 (357.5 mg g<small><sup>−1</sup></small>) was higher (30%) than that of C<small><sub>GO</sub></small>/MCF8 (250 mg g<small><sup>−1</sup></small>) at a contact time of 1 h, nanocomposite dose of 0.002 g, and initial Cd<small><sup>2+</sup></small> concentration of 60 mg L<small><sup>−1</sup></small>. The Cd<small><sup>2+</sup></small> adsorption capacity of C<small><sub>GO</sub></small>/MCF nanocomposites was fitted with pseudo-second-order kinetics (<em>R</em><small><sup>2</sup></small> &gt; 0.99) and the Langmuir isotherm (<em>R</em><small><sup>2</sup></small> &gt; 0.99). The adsorption mechanisms involved pore filling, electrostatic attraction, surface complexation, ion exchange, and cation–π attraction. However, coexisting metal ions affected Cd<small><sup>2+</sup></small> removal by C<small><sub>GO</sub></small>/MCF2, reducing the efficiency by 33%. Using wastewater from a plating metal restoration workshop, it was demonstrated that the C<small><sub>GO</sub></small>/MCF2 nanocomposite exhibits high removal efficiencies of 71% for Cd, 100% for Pb, 32% for Zn, and 28% for Fe. This study suggests that C<small><sub>GO</sub></small> prepared from green biomass of OFP, in combination with MCF2, can be a promising adsorbent for removing metal contaminants from water and wastewater.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"93","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ew/d4ew00059e","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, carbon with graphene oxide (GO)-like composition (CGO) was prepared from oak fruit peel (OFP) using a room-temperature method. CGO was decorated with sol–gel synthesized Mg1−xCaxFe2O4 (x = 0.2 (MCF2) and 0.8 (MCF8)) via a hydrothermal method to obtain CGO/MCF nanocomposites. The samples were characterized using XRD, RS, FTIR, FESEM, EDX, TEM, BET, and VSM analysis. CGO/MCF nanocomposites were assessed for their Cd2+ adsorption capacity from aqueous solutions via flame AAS. Factors such as contact time (1–60 min); nanocomposite dose (0.002–0.01 g); initial Cd2+ concentration (5–60 mg L−1); and coexisting ions of Pb2+, Co2+, and Ni2+ (10 mg L−1 each) at pH 7 were examined. The results indicated that the Cd2+ adsorption capacity of CGO/MCF2 (357.5 mg g−1) was higher (30%) than that of CGO/MCF8 (250 mg g−1) at a contact time of 1 h, nanocomposite dose of 0.002 g, and initial Cd2+ concentration of 60 mg L−1. The Cd2+ adsorption capacity of CGO/MCF nanocomposites was fitted with pseudo-second-order kinetics (R2 > 0.99) and the Langmuir isotherm (R2 > 0.99). The adsorption mechanisms involved pore filling, electrostatic attraction, surface complexation, ion exchange, and cation–π attraction. However, coexisting metal ions affected Cd2+ removal by CGO/MCF2, reducing the efficiency by 33%. Using wastewater from a plating metal restoration workshop, it was demonstrated that the CGO/MCF2 nanocomposite exhibits high removal efficiencies of 71% for Cd, 100% for Pb, 32% for Zn, and 28% for Fe. This study suggests that CGO prepared from green biomass of OFP, in combination with MCF2, can be a promising adsorbent for removing metal contaminants from water and wastewater.

Abstract Image

Abstract Image

将橡树果皮作为生物质废物进行资源化利用,以合成类似氧化石墨烯成分的碳及其与 Mg1-xCaxFe2O4 的复合材料,用于去除水中的镉(II):表征、磁性能和吸附潜力研究
本研究采用室温法从橡树果皮(OFP)中制备了类似氧化石墨烯(GO)成分的碳(CGO)。通过水热法将 CGO 与溶胶-凝胶合成的 Mg1-xCaxFe2O4 (x = 0.2(MCF2)和 0.8(MCF8))进行装饰,得到 CGO/MCF 纳米复合材料。样品采用 XRD、RS、FTIR、FESEM、EDX、TEM、BET 和 VSM 分析进行表征。通过火焰原子吸收光谱法评估了 CGO/MCF 纳米复合材料对水溶液中 Cd2+ 的吸附能力。考察的因素包括:接触时间(1-60 分钟);纳米复合材料剂量(0.002-0.01 克);初始 Cd2+ 浓度(5-60 毫克/升);pH 值为 7 时的共存离子 Pb2+、Co2+ 和 Ni2+(各 10 毫克/升)。结果表明,在接触时间为 1 h、纳米复合材料剂量为 0.002 g、初始 Cd2+ 浓度为 60 mg L-1 的条件下,CGO/MCF2(357.5 mg g-1)的 Cd2+ 吸附能力(30%)高于 CGO/MCF8(250 mg g-1)。CGO/MCF 纳米复合材料对 Cd2+ 的吸附能力与伪二阶动力学(R2 > 0.99)和朗缪尔等温线(R2 > 0.99)相吻合。吸附机理包括孔隙填充、静电吸引、表面络合、离子交换和阳离子-π吸引。然而,共存的金属离子影响了 CGO/MCF2 对 Cd2+ 的去除,效率降低了 33%。利用电镀金属修复车间的废水证明,CGO/MCF2 纳米复合材料对镉的去除率高达 71%,对铅的去除率为 100%,对锌的去除率为 32%,对铁的去除率为 28%。这项研究表明,由 OFP 绿色生物质制备的 CGO 与 MCF2 结合使用,可以成为一种很有前景的吸附剂,用于去除水和废水中的金属污染物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信