A report on arsenic removal from water via adsorption of an arsenomolybdate complex on S–CuFe2O4 adsorbents†

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Ejaz Hussain, Meryam Sultana, Muhammad Zeeshan Abid, Aqsa Khan Buzdar, Hamdy Khamees Thabet, Salah M. El-Bahy, Muhammad Jalil, Abdul Rauf, Zeinhom M. El-Bahy and Khezina Rafiq
{"title":"A report on arsenic removal from water via adsorption of an arsenomolybdate complex on S–CuFe2O4 adsorbents†","authors":"Ejaz Hussain, Meryam Sultana, Muhammad Zeeshan Abid, Aqsa Khan Buzdar, Hamdy Khamees Thabet, Salah M. El-Bahy, Muhammad Jalil, Abdul Rauf, Zeinhom M. El-Bahy and Khezina Rafiq","doi":"10.1039/D4EW00300D","DOIUrl":null,"url":null,"abstract":"<p >Drinking ground water in many areas of Pakistan is contaminated by dissolved arsenic. The consumption of arsenic-contaminated water causes many carcinogenic diseases. Hence, this work aims to estimate and eliminate arsenic from ground water used for drinking purposes in the Layyah District (Punjab – PK). For the purpose, water samples were collected from selected areas of the aforementioned district, and average arsenic concentration was estimated to be 95 ppb. Thereafter, to remove dissolved arsenic contents (As<small><sup>3+</sup></small> and As<small><sup>5+</sup></small>), sulphur-doped copper ferrite, <em>i.e.</em>, S–CuFe<small><sub>2</sub></small>O<small><sub>4</sub></small> adsorbent, was developed <em>via</em> a hydrothermal approach. To justify its effectiveness, structural morphology of the adsorbent was evaluated <em>via</em> XRD, FT-IR, Raman and AFM analysis, whereas its stability was investigated <em>via</em> TGA analysis. Its purity and chemical compositions were determined using SEM, EDX and XPS techniques. Magnetic properties of S–CuFe<small><sub>2</sub></small>O<small><sub>4</sub></small> were examined <em>via</em> VSM. The results indicated that spinel cubic morphology of S–CuFe<small><sub>2</sub></small>O<small><sub>4</sub></small> facilitates the effective adsorption of arsenic contents. For complete elimination, arsenic contents were first converted to an arsenomolybdate complex (AMC) and then removed from water <em>via</em> adsorption on S–CuFe<small><sub>2</sub></small>O<small><sub>4</sub></small>. The adsorption was found to be spontaneous with Δ<em>G</em> = −13.51 kJ mol<small><sup>−1</sup></small>, and adsorption kinetics for the AMC were well fitted by pseudo second order with a correlation coefficient (<em>R</em><small><sup>2</sup></small>) of 0.99997. Adsorption isotherm and electrostatic interaction between S–CuFe<small><sub>2</sub></small>O<small><sub>4</sub></small> and AMC were confirmed and revealed using Langmuir and Temkin models with <em>R</em><small><sup>2</sup></small> = 0.97021 and <em>R</em><small><sup>2</sup></small> = 0.87431, respectively. Results suggested that one gram of S–CuFe<small><sub>2</sub></small>O<small><sub>4</sub></small> is enough to deliver 275 gal of arsenic free water.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"93","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ew/d4ew00300d","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Drinking ground water in many areas of Pakistan is contaminated by dissolved arsenic. The consumption of arsenic-contaminated water causes many carcinogenic diseases. Hence, this work aims to estimate and eliminate arsenic from ground water used for drinking purposes in the Layyah District (Punjab – PK). For the purpose, water samples were collected from selected areas of the aforementioned district, and average arsenic concentration was estimated to be 95 ppb. Thereafter, to remove dissolved arsenic contents (As3+ and As5+), sulphur-doped copper ferrite, i.e., S–CuFe2O4 adsorbent, was developed via a hydrothermal approach. To justify its effectiveness, structural morphology of the adsorbent was evaluated via XRD, FT-IR, Raman and AFM analysis, whereas its stability was investigated via TGA analysis. Its purity and chemical compositions were determined using SEM, EDX and XPS techniques. Magnetic properties of S–CuFe2O4 were examined via VSM. The results indicated that spinel cubic morphology of S–CuFe2O4 facilitates the effective adsorption of arsenic contents. For complete elimination, arsenic contents were first converted to an arsenomolybdate complex (AMC) and then removed from water via adsorption on S–CuFe2O4. The adsorption was found to be spontaneous with ΔG = −13.51 kJ mol−1, and adsorption kinetics for the AMC were well fitted by pseudo second order with a correlation coefficient (R2) of 0.99997. Adsorption isotherm and electrostatic interaction between S–CuFe2O4 and AMC were confirmed and revealed using Langmuir and Temkin models with R2 = 0.97021 and R2 = 0.87431, respectively. Results suggested that one gram of S–CuFe2O4 is enough to deliver 275 gal of arsenic free water.

Abstract Image

关于通过 S-CuFe2O4 吸附剂吸附钼酸砷络合物去除水中砷的报告†。
巴基斯坦许多地区的地下饮用水受到溶解砷含量的污染。水中的砷会导致消费者患上多种致癌疾病。因此,这项工作旨在估算和消除 Layyah 区(旁遮普-巴基斯坦)地下饮用水中的砷含量。为此,我们从上述地区的选定区域采集了水样,估计砷的平均浓度为 95 ppb。其次,为了去除溶解砷含量(As3+ & As5+),通过水热法开发了掺硫铜铁氧体,即 S-CuFe2O4 吸附剂。为了证明其有效性,通过 XRD、FT-IR、拉曼和原子力显微镜分析评估了吸附剂的结构和形态,并通过 TGA 分析研究了其稳定性。纯度和化学成分通过扫描电镜、电子衍射X和 XPS 技术进行了测定。通过 VSM 对 S-CuFe2O4 的磁性能进行了检测。结果表明,S-CuFe2O4 呈脊柱立方形态,有利于有效吸附砷含量。为了彻底消除砷,砷含量首先转化为钼酸砷络合物(AMC),然后通过 S-CuFe2O4 上的吸附从水中去除。吸附是自发的,∆G = -13.51 Kj.mol-1,AMC 的吸附动力学与伪二阶拟合得很好,相关系数为 (R2 = 0.99997)。S-CuFe2O4 和 AMC 之间的吸附等温线和静电作用通过使用 Langmuir 和 Temkin 模型得到了证实和揭示,R2 = 0.97021 和 R2 = 0.87431。结果表明,一克 S-CuFe2O4 足以提供 275 加仑的无砷水。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信