KLF7 reverses ox-LDL-induced ferroptosis in HMEC-1 cells through transcriptionally activating ALKBH5 to inhibit the m6A modification of ACSL4

IF 2 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Qinggen Xiong, Zhijian Luo, Xiaoming Xie, Wei Zhou
{"title":"KLF7 reverses ox-LDL-induced ferroptosis in HMEC-1 cells through transcriptionally activating ALKBH5 to inhibit the m6A modification of ACSL4","authors":"Qinggen Xiong, Zhijian Luo, Xiaoming Xie, Wei Zhou","doi":"10.1007/s10616-024-00641-2","DOIUrl":null,"url":null,"abstract":"<p>Atherosclerosis is a chronic inflammatory vascular disease. It was confirmed that activation of ferroptosis could induce the development of AS. Meanwhile, Krüppel-like factor 7 was reported to be involved in AS. Nevertheless, the detailed function of KLF7 in ferroptosis during AS has not been not explored. To mimic AS in vitro, human microvascular endothelial cells (HMEC-1) were exposed to 100 μg/mL ox-LDL. Cell viability was tested using MTT assay, and commercial kits were applied to examine the ferroptosis. Flow cytometry was applied for testing lipid ROS level. The relation between KLF7 and AlkB homolog 5 (ALKBH5) was explored using dual luciferase and ChIP assays. Furthermore, MeRIP was used to test the m6A modification level of ACSL4. KLF7 and ALKBH5 overexpression reversed ox-LDL-induced ferroptosis (characterized by up-regulated MDA, iron, Fe<sup>2+</sup>, lipid ROS and ACSL4, and down-regulated GSH and GPX4) in HMEC-1 cells. In addition, KLF7 transcriptionally activated ALKBH5. ALKBH5 decreased the level of ACSL4 by inhibiting the m6A modification of ACSL4. Furthermore, upregulation of KLF7 restored ox-LDL-induced ferroptosis in HMEC-1 cells via upregulating ALKBH5. KLF7 repressed ox-LDL-induced ferroptosis in HMEC-1 cells through promoting ALKBH5 mediated m6A demethylation of ACSL4. Our study might supply a new therapeutic strategy for AS treatment.</p>","PeriodicalId":10890,"journal":{"name":"Cytotechnology","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytotechnology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10616-024-00641-2","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Atherosclerosis is a chronic inflammatory vascular disease. It was confirmed that activation of ferroptosis could induce the development of AS. Meanwhile, Krüppel-like factor 7 was reported to be involved in AS. Nevertheless, the detailed function of KLF7 in ferroptosis during AS has not been not explored. To mimic AS in vitro, human microvascular endothelial cells (HMEC-1) were exposed to 100 μg/mL ox-LDL. Cell viability was tested using MTT assay, and commercial kits were applied to examine the ferroptosis. Flow cytometry was applied for testing lipid ROS level. The relation between KLF7 and AlkB homolog 5 (ALKBH5) was explored using dual luciferase and ChIP assays. Furthermore, MeRIP was used to test the m6A modification level of ACSL4. KLF7 and ALKBH5 overexpression reversed ox-LDL-induced ferroptosis (characterized by up-regulated MDA, iron, Fe2+, lipid ROS and ACSL4, and down-regulated GSH and GPX4) in HMEC-1 cells. In addition, KLF7 transcriptionally activated ALKBH5. ALKBH5 decreased the level of ACSL4 by inhibiting the m6A modification of ACSL4. Furthermore, upregulation of KLF7 restored ox-LDL-induced ferroptosis in HMEC-1 cells via upregulating ALKBH5. KLF7 repressed ox-LDL-induced ferroptosis in HMEC-1 cells through promoting ALKBH5 mediated m6A demethylation of ACSL4. Our study might supply a new therapeutic strategy for AS treatment.

Abstract Image

KLF7 通过转录激活 ALKBH5 来抑制 ACSL4 的 m6A 修饰,从而逆转氧化-LDL 在 HMEC-1 细胞中诱导的铁变态反应
动脉粥样硬化是一种慢性炎症性血管疾病。有研究证实,铁变态反应的激活可诱导强直性脊柱炎的发生。同时,Krüppel样因子7被报道参与了强直性脊柱炎的发生。尽管如此,KLF7在强直性脊柱炎过程中参与铁变态反应的详细功能尚未被探究。为了在体外模拟 AS,人微血管内皮细胞(HMEC-1)暴露于 100 μg/mL ox-LDL。使用 MTT 法检测细胞活力,并使用商业试剂盒检测铁变态反应。流式细胞仪用于检测脂质 ROS 水平。使用双荧光素酶和 ChIP 检测法探讨了 KLF7 和 AlkB homolog 5 (ALKBH5) 之间的关系。此外,还利用 MeRIP 检测了 ACSL4 的 m6A 修饰水平。在 HMEC-1 细胞中,KLF7 和 ALKBH5 的过表达逆转了氧化-LDL 诱导的铁变态反应(表现为 MDA、铁、Fe2+、脂质 ROS 和 ACSL4 上调,GSH 和 GPX4 下调)。此外,KLF7 还能转录激活 ALKBH5。ALKBH5 通过抑制 ACSL4 的 m6A 修饰降低了 ACSL4 的水平。此外,上调 KLF7 还能通过上调 ALKBH5 恢复 ox-LDL 诱导的 HMEC-1 细胞铁变态反应。KLF7通过促进ALKBH5介导的ACSL4的m6A去甲基化,抑制了ox-LDL诱导的HMEC-1细胞的铁变态反应。我们的研究可能会为强直性脊柱炎的治疗提供一种新的治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cytotechnology
Cytotechnology 生物-生物工程与应用微生物
CiteScore
4.10
自引率
0.00%
发文量
49
审稿时长
6-12 weeks
期刊介绍: The scope of the Journal includes: 1. The derivation, genetic modification and characterization of cell lines, genetic and phenotypic regulation, control of cellular metabolism, cell physiology and biochemistry related to cell function, performance and expression of cell products. 2. Cell culture techniques, substrates, environmental requirements and optimization, cloning, hybridization and molecular biology, including genomic and proteomic tools. 3. Cell culture systems, processes, reactors, scale-up, and industrial production. Descriptions of the design or construction of equipment, media or quality control procedures, that are ancillary to cellular research. 4. The application of animal/human cells in research in the field of stem cell research including maintenance of stemness, differentiation, genetics, and senescence, cancer research, research in immunology, as well as applications in tissue engineering and gene therapy. 5. The use of cell cultures as a substrate for bioassays, biomedical applications and in particular as a replacement for animal models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信