{"title":"KLF7 reverses ox-LDL-induced ferroptosis in HMEC-1 cells through transcriptionally activating ALKBH5 to inhibit the m6A modification of ACSL4","authors":"Qinggen Xiong, Zhijian Luo, Xiaoming Xie, Wei Zhou","doi":"10.1007/s10616-024-00641-2","DOIUrl":null,"url":null,"abstract":"<p>Atherosclerosis is a chronic inflammatory vascular disease. It was confirmed that activation of ferroptosis could induce the development of AS. Meanwhile, Krüppel-like factor 7 was reported to be involved in AS. Nevertheless, the detailed function of KLF7 in ferroptosis during AS has not been not explored. To mimic AS in vitro, human microvascular endothelial cells (HMEC-1) were exposed to 100 μg/mL ox-LDL. Cell viability was tested using MTT assay, and commercial kits were applied to examine the ferroptosis. Flow cytometry was applied for testing lipid ROS level. The relation between KLF7 and AlkB homolog 5 (ALKBH5) was explored using dual luciferase and ChIP assays. Furthermore, MeRIP was used to test the m6A modification level of ACSL4. KLF7 and ALKBH5 overexpression reversed ox-LDL-induced ferroptosis (characterized by up-regulated MDA, iron, Fe<sup>2+</sup>, lipid ROS and ACSL4, and down-regulated GSH and GPX4) in HMEC-1 cells. In addition, KLF7 transcriptionally activated ALKBH5. ALKBH5 decreased the level of ACSL4 by inhibiting the m6A modification of ACSL4. Furthermore, upregulation of KLF7 restored ox-LDL-induced ferroptosis in HMEC-1 cells via upregulating ALKBH5. KLF7 repressed ox-LDL-induced ferroptosis in HMEC-1 cells through promoting ALKBH5 mediated m6A demethylation of ACSL4. Our study might supply a new therapeutic strategy for AS treatment.</p>","PeriodicalId":10890,"journal":{"name":"Cytotechnology","volume":"23 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytotechnology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10616-024-00641-2","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Atherosclerosis is a chronic inflammatory vascular disease. It was confirmed that activation of ferroptosis could induce the development of AS. Meanwhile, Krüppel-like factor 7 was reported to be involved in AS. Nevertheless, the detailed function of KLF7 in ferroptosis during AS has not been not explored. To mimic AS in vitro, human microvascular endothelial cells (HMEC-1) were exposed to 100 μg/mL ox-LDL. Cell viability was tested using MTT assay, and commercial kits were applied to examine the ferroptosis. Flow cytometry was applied for testing lipid ROS level. The relation between KLF7 and AlkB homolog 5 (ALKBH5) was explored using dual luciferase and ChIP assays. Furthermore, MeRIP was used to test the m6A modification level of ACSL4. KLF7 and ALKBH5 overexpression reversed ox-LDL-induced ferroptosis (characterized by up-regulated MDA, iron, Fe2+, lipid ROS and ACSL4, and down-regulated GSH and GPX4) in HMEC-1 cells. In addition, KLF7 transcriptionally activated ALKBH5. ALKBH5 decreased the level of ACSL4 by inhibiting the m6A modification of ACSL4. Furthermore, upregulation of KLF7 restored ox-LDL-induced ferroptosis in HMEC-1 cells via upregulating ALKBH5. KLF7 repressed ox-LDL-induced ferroptosis in HMEC-1 cells through promoting ALKBH5 mediated m6A demethylation of ACSL4. Our study might supply a new therapeutic strategy for AS treatment.
期刊介绍:
The scope of the Journal includes:
1. The derivation, genetic modification and characterization of cell lines, genetic and phenotypic regulation, control of cellular metabolism, cell physiology and biochemistry related to cell function, performance and expression of cell products.
2. Cell culture techniques, substrates, environmental requirements and optimization, cloning, hybridization and molecular biology, including genomic and proteomic tools.
3. Cell culture systems, processes, reactors, scale-up, and industrial production. Descriptions of the design or construction of equipment, media or quality control procedures, that are ancillary to cellular research.
4. The application of animal/human cells in research in the field of stem cell research including maintenance of stemness, differentiation, genetics, and senescence, cancer research, research in immunology, as well as applications in tissue engineering and gene therapy.
5. The use of cell cultures as a substrate for bioassays, biomedical applications and in particular as a replacement for animal models.