S. Sanyal, P. Bhuyan, R. Karthikeyan, R. Alroy, G. Siva Kumar, S. Mandal, M. Kamaraj, S. Seshadri, V. S. Sarma
{"title":"High Temperature Air and Steam Oxidation and Fireside Corrosion Behavior of 304HCu Stainless Steel: Dichotomous Role of Grain Boundary Engineering","authors":"S. Sanyal, P. Bhuyan, R. Karthikeyan, R. Alroy, G. Siva Kumar, S. Mandal, M. Kamaraj, S. Seshadri, V. S. Sarma","doi":"10.1007/s11085-024-10252-z","DOIUrl":null,"url":null,"abstract":"<div><p>The 304HCu stainless steel is a candidate material for superheater and reheater tubes in advanced ultra-supercritical power plants due to its excellent creep and oxidation resistance. However, these operating conditions involve exposure to steam at high pressure and temperature on the steam-side and hot coal-ash products on the fireside. In this study, the role of grain boundary character distribution (GBCD) on oxidation and fireside corrosion behavior of 304HCu steel is investigated. The GBCD was modified through grain boundary engineering (GBE) via optimized strain-annealing treatment on the as-received (AR) specimen. The air oxidation, steam oxidation (pressure ~ 243 bar) and fireside corrosion studies were conducted at 973 K for up to 1000 h, in custom-designed setups precisely simulating the operating conditions. Following GBE, the grain size (excluding twins) and coincident site lattice boundary (Σ ≤ 29) fraction increased from 21 ± 1 to 60 ± 12 μm and from 62 ± 4 to 74 ± 3%, respectively, resulting in disruption of the random high angle grain boundary networks through the introduction of twins. Evaluation of oxidation behavior revealed that the GBE specimens have lower oxidation resistance (i.e., higher weight gain and oxide scale thickness) in both air and steam, while the same specimen displayed improved fireside corrosion resistance (lower percolation depth) as compared to the AR specimen. From a detailed analysis of the oxidation/fireside corrosion products and cross-sectional microstructures of the oxide layers, the above responses could be correlated with the GBCD and grain size, and the possible mechanisms operative during the air/steam oxidation and fireside corrosion are also presented.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":724,"journal":{"name":"Oxidation of Metals","volume":"101 1 supplement","pages":"143 - 168"},"PeriodicalIF":2.1000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oxidation of Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11085-024-10252-z","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The 304HCu stainless steel is a candidate material for superheater and reheater tubes in advanced ultra-supercritical power plants due to its excellent creep and oxidation resistance. However, these operating conditions involve exposure to steam at high pressure and temperature on the steam-side and hot coal-ash products on the fireside. In this study, the role of grain boundary character distribution (GBCD) on oxidation and fireside corrosion behavior of 304HCu steel is investigated. The GBCD was modified through grain boundary engineering (GBE) via optimized strain-annealing treatment on the as-received (AR) specimen. The air oxidation, steam oxidation (pressure ~ 243 bar) and fireside corrosion studies were conducted at 973 K for up to 1000 h, in custom-designed setups precisely simulating the operating conditions. Following GBE, the grain size (excluding twins) and coincident site lattice boundary (Σ ≤ 29) fraction increased from 21 ± 1 to 60 ± 12 μm and from 62 ± 4 to 74 ± 3%, respectively, resulting in disruption of the random high angle grain boundary networks through the introduction of twins. Evaluation of oxidation behavior revealed that the GBE specimens have lower oxidation resistance (i.e., higher weight gain and oxide scale thickness) in both air and steam, while the same specimen displayed improved fireside corrosion resistance (lower percolation depth) as compared to the AR specimen. From a detailed analysis of the oxidation/fireside corrosion products and cross-sectional microstructures of the oxide layers, the above responses could be correlated with the GBCD and grain size, and the possible mechanisms operative during the air/steam oxidation and fireside corrosion are also presented.
期刊介绍:
Oxidation of Metals is the premier source for the rapid dissemination of current research on all aspects of the science of gas-solid reactions at temperatures greater than about 400˚C, with primary focus on the high-temperature corrosion of bulk and coated systems. This authoritative bi-monthly publishes original scientific papers on kinetics, mechanisms, studies of scales from structural and morphological viewpoints, transport properties in scales, phase-boundary reactions, and much more. Articles may discuss both theoretical and experimental work related to gas-solid reactions at the surface or near-surface of a material exposed to elevated temperatures, including reactions with oxygen, nitrogen, sulfur, carbon and halogens. In addition, Oxidation of Metals publishes the results of frontier research concerned with deposit-induced attack. Review papers and short technical notes are encouraged.