Modified defect relation for Gauss maps of minimal surfaces with hypersurfaces of projective varieties in the subgeneral position

IF 0.8 3区 数学 Q2 MATHEMATICS
Si Duc Quang
{"title":"Modified defect relation for Gauss maps of minimal surfaces with hypersurfaces of projective varieties in the subgeneral position","authors":"Si Duc Quang","doi":"10.1002/mana.202300217","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we establish some modified defect relations for the Gauss map <span></span><math>\n <semantics>\n <mi>g</mi>\n <annotation>$g$</annotation>\n </semantics></math> of a complete minimal surface <span></span><math>\n <semantics>\n <mrow>\n <mi>S</mi>\n <mo>⊂</mo>\n <msup>\n <mi>R</mi>\n <mi>m</mi>\n </msup>\n </mrow>\n <annotation>$S\\subset \\mathbb {R}^m$</annotation>\n </semantics></math> into a <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>-dimension projective subvariety <span></span><math>\n <semantics>\n <mrow>\n <mi>V</mi>\n <mo>⊂</mo>\n <msup>\n <mi>P</mi>\n <mi>n</mi>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>C</mi>\n <mo>)</mo>\n </mrow>\n <mspace></mspace>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>=</mo>\n <mi>m</mi>\n <mo>−</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$V\\subset \\mathbb {P}^n(\\mathbb {C})\\ (n=m-1)$</annotation>\n </semantics></math> with hypersurfaces <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Q</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <mtext>…</mtext>\n <mo>,</mo>\n <msub>\n <mi>Q</mi>\n <mi>q</mi>\n </msub>\n </mrow>\n <annotation>$Q_1,\\ldots,Q_q$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>P</mi>\n <mi>n</mi>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>C</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathbb {P}^n(\\mathbb {C})$</annotation>\n </semantics></math> in <span></span><math>\n <semantics>\n <mi>N</mi>\n <annotation>$N$</annotation>\n </semantics></math>-subgeneral position with respect to <span></span><math>\n <semantics>\n <mrow>\n <mi>V</mi>\n <mspace></mspace>\n <mo>(</mo>\n <mi>N</mi>\n <mo>≥</mo>\n <mi>k</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$V\\ (N\\ge k)$</annotation>\n </semantics></math>. In particular, we give the upper bound for the number <span></span><math>\n <semantics>\n <mi>q</mi>\n <annotation>$q$</annotation>\n </semantics></math> if the image <span></span><math>\n <semantics>\n <mrow>\n <mi>g</mi>\n <mo>(</mo>\n <mi>S</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$g(S)$</annotation>\n </semantics></math> intersects each hypersurface <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Q</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <mtext>…</mtext>\n <mo>,</mo>\n <msub>\n <mi>Q</mi>\n <mi>q</mi>\n </msub>\n </mrow>\n <annotation>$Q_1,\\ldots,Q_q$</annotation>\n </semantics></math> a finite number of times and <span></span><math>\n <semantics>\n <mi>g</mi>\n <annotation>$g$</annotation>\n </semantics></math> is nondegenerate over <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>I</mi>\n <mi>d</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>V</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$I_d(V)$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>=</mo>\n <mtext>lcm</mtext>\n <mo>(</mo>\n <mo>deg</mo>\n <msub>\n <mi>Q</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <mtext>…</mtext>\n <mo>,</mo>\n <mo>deg</mo>\n <msub>\n <mi>Q</mi>\n <mi>q</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$d=\\text{lcm}(\\deg Q_1,\\ldots,\\deg Q_q)$</annotation>\n </semantics></math>, that is, the image of <span></span><math>\n <semantics>\n <mi>g</mi>\n <annotation>$g$</annotation>\n </semantics></math> is not contained in any hypersurface <span></span><math>\n <semantics>\n <mi>Q</mi>\n <annotation>$Q$</annotation>\n </semantics></math> of degree <span></span><math>\n <semantics>\n <mi>d</mi>\n <annotation>$d$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mi>V</mi>\n <mo>⊄</mo>\n <mi>Q</mi>\n </mrow>\n <annotation>$V\\not\\subset Q$</annotation>\n </semantics></math>. Our results extend and generalize the previous results for the case of the Gauss map and hyperplanes in a projective space. The results and the method of this paper have been applied by some authors to study the unicity problem of the Gauss maps sharing families of hypersurfaces.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"297 9","pages":"3334-3362"},"PeriodicalIF":0.8000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300217","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we establish some modified defect relations for the Gauss map g $g$ of a complete minimal surface S R m $S\subset \mathbb {R}^m$ into a k $k$ -dimension projective subvariety V P n ( C ) ( n = m 1 ) $V\subset \mathbb {P}^n(\mathbb {C})\ (n=m-1)$ with hypersurfaces Q 1 , , Q q $Q_1,\ldots,Q_q$ of P n ( C ) $\mathbb {P}^n(\mathbb {C})$ in N $N$ -subgeneral position with respect to V ( N k ) $V\ (N\ge k)$ . In particular, we give the upper bound for the number q $q$ if the image g ( S ) $g(S)$ intersects each hypersurface Q 1 , , Q q $Q_1,\ldots,Q_q$ a finite number of times and g $g$ is nondegenerate over I d ( V ) $I_d(V)$ , where d = lcm ( deg Q 1 , , deg Q q ) $d=\text{lcm}(\deg Q_1,\ldots,\deg Q_q)$ , that is, the image of g $g$ is not contained in any hypersurface Q $Q$ of degree d $d$ with V Q $V\not\subset Q$ . Our results extend and generalize the previous results for the case of the Gauss map and hyperplanes in a projective space. The results and the method of this paper have been applied by some authors to study the unicity problem of the Gauss maps sharing families of hypersurfaces.

最小曲面的高斯映射与次一般位置投影变体超曲面的修正缺陷关系
在本文中,我们建立了一些完整极小曲面的高斯映射到-度投影子域的修正缺陷关系,该子域中的超曲面在-次一般位置上。 特别是,我们给出了如果映像与每个超曲面相交有限次并且在-次一般位置上是非退化的-次一般位置上的数量上界,其中-次一般位置上的-次一般位置上的-次一般位置上的-次一般位置上的-次一般位置上的-次一般位置上的-次一般位置上的-次一般位置上的-次一般位置上的映像不包含在任何度为-的超曲面中。我们的结果扩展并概括了之前关于投影空间中高斯图和超平面的结果。本文的结果和方法已被一些学者用于研究共享超曲面族的高斯图的唯一性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信