{"title":"Synergistic mechanism of physical chemistry and acid bacteria: Product evolution of sulphides during tunnel mining","authors":"Minjie He, Yuanchuan Ren, Guangfei Qu, Junyan Li, Caiyue Jin, Ye Liu, Linrui Kuang","doi":"10.1002/gj.5016","DOIUrl":null,"url":null,"abstract":"<p>Tunnel waste constitutes a prevalent by-product of highway construction in high-altitude mountainous and hilly regions. Sulphide minerals exhibit a unique distribution pattern within the alpine hills. Consequently, tunnel excavation can disrupt the stability of these sulphide minerals, rendering the tunnel waste susceptible to generating secondary environmental hazards during stockpiling. This research delves into the migration and transformation dynamics of potential environmental pollutants in tunnel waste through geoenvironmental simulation techniques. Controlled variables were employed to simulate various conditions, including surface illumination, internal anaerobiosis, water content and aerobic environments. The study's findings indicate that the presence of pyrite in the waste stream primarily drives the secondary contamination of the tunnel waste. Pyrite within the slag tends to react and form sulphuric acid in the stockpile environment, thus creating an acidic milieu that exacerbates the release of existing contaminants. The emergence of an anaerobic environment and a photocatalytic system composed of Fe/Ti substances in the waste stream serves to further accelerate pollutant release. This study thoroughly investigates the primary causes of environmental pollution during the stockpiling of tunnel slag and assesses the potential environmental impact scenarios. The outcomes of this research offer substantial theoretical and empirical support for the management of slag generated during the tunnel construction process.</p>","PeriodicalId":12784,"journal":{"name":"Geological Journal","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geological Journal","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gj.5016","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Tunnel waste constitutes a prevalent by-product of highway construction in high-altitude mountainous and hilly regions. Sulphide minerals exhibit a unique distribution pattern within the alpine hills. Consequently, tunnel excavation can disrupt the stability of these sulphide minerals, rendering the tunnel waste susceptible to generating secondary environmental hazards during stockpiling. This research delves into the migration and transformation dynamics of potential environmental pollutants in tunnel waste through geoenvironmental simulation techniques. Controlled variables were employed to simulate various conditions, including surface illumination, internal anaerobiosis, water content and aerobic environments. The study's findings indicate that the presence of pyrite in the waste stream primarily drives the secondary contamination of the tunnel waste. Pyrite within the slag tends to react and form sulphuric acid in the stockpile environment, thus creating an acidic milieu that exacerbates the release of existing contaminants. The emergence of an anaerobic environment and a photocatalytic system composed of Fe/Ti substances in the waste stream serves to further accelerate pollutant release. This study thoroughly investigates the primary causes of environmental pollution during the stockpiling of tunnel slag and assesses the potential environmental impact scenarios. The outcomes of this research offer substantial theoretical and empirical support for the management of slag generated during the tunnel construction process.
期刊介绍:
In recent years there has been a growth of specialist journals within geological sciences. Nevertheless, there is an important role for a journal of an interdisciplinary kind. Traditionally, GEOLOGICAL JOURNAL has been such a journal and continues in its aim of promoting interest in all branches of the Geological Sciences, through publication of original research papers and review articles. The journal publishes Special Issues with a common theme or regional coverage e.g. Chinese Dinosaurs; Tectonics of the Eastern Mediterranean, Triassic basins of the Central and North Atlantic Borderlands). These are extensively cited.
The Journal has a particular interest in publishing papers on regional case studies from any global locality which have conclusions of general interest. Such papers may emphasize aspects across the full spectrum of geological sciences.