Exploring magnetic nanomaterials with a focus on magnetic biochar in anaerobic digestion: from synthesis to application

IF 13.1 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Biochar Pub Date : 2024-06-24 DOI:10.1007/s42773-024-00354-x
Wenneng Zhou, Mahmoud Mazarji, Mengtong Li, Aohua Li, Yajing Wang, Yadong Yang, Jonathan T. E. Lee, Eldon R. Rene, Xiangzhou Yuan, Junting Pan
{"title":"Exploring magnetic nanomaterials with a focus on magnetic biochar in anaerobic digestion: from synthesis to application","authors":"Wenneng Zhou, Mahmoud Mazarji, Mengtong Li, Aohua Li, Yajing Wang, Yadong Yang, Jonathan T. E. Lee, Eldon R. Rene, Xiangzhou Yuan, Junting Pan","doi":"10.1007/s42773-024-00354-x","DOIUrl":null,"url":null,"abstract":"<p>Anaerobic digestion technology, effective for sustainable waste management and renewable energy, but challenged by slow reaction rates and low biogas yields, could benefit from advancements in magnetic nanomaterials. This review explores the potential of magnetic nanomaterials, particularly magnetic biochar nanocomposites, to address these challenges by serving as electron conduits and providing essential iron. This review contributes a thorough overview of the application of magnetic nanoparticles loaded into biochar in anaerobic digestion and engages in a comprehensive discussion regarding the synthesis methods and characterization of various magnetic nanoparticles, elucidating their mechanisms of action in both the absence and presence of magnetic fields. Our review underscores the predominance of co-precipitation (53%) and commercially sourced nanoparticles (29%) as the main synthesis methods, with chemical reduction, pyrolysis, and green synthesis pathways less commonly utilized (8%, 5%, and 5%, respectively). Notably, pyrolysis is predominantly employed for synthesizing magnetic biochar nanocomposites, reflecting its prevalence in 100% of cases for this specific application. By offering a critical evaluation of the current state of knowledge and discussing the challenges and future directions for research in this field, this review can help researchers and practitioners better understand the potential of magnetic biochar nanocomposites for enhancing anaerobic digestion performance and ultimately advancing sustainable waste management and renewable energy production.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":8789,"journal":{"name":"Biochar","volume":"23 1","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochar","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s42773-024-00354-x","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Anaerobic digestion technology, effective for sustainable waste management and renewable energy, but challenged by slow reaction rates and low biogas yields, could benefit from advancements in magnetic nanomaterials. This review explores the potential of magnetic nanomaterials, particularly magnetic biochar nanocomposites, to address these challenges by serving as electron conduits and providing essential iron. This review contributes a thorough overview of the application of magnetic nanoparticles loaded into biochar in anaerobic digestion and engages in a comprehensive discussion regarding the synthesis methods and characterization of various magnetic nanoparticles, elucidating their mechanisms of action in both the absence and presence of magnetic fields. Our review underscores the predominance of co-precipitation (53%) and commercially sourced nanoparticles (29%) as the main synthesis methods, with chemical reduction, pyrolysis, and green synthesis pathways less commonly utilized (8%, 5%, and 5%, respectively). Notably, pyrolysis is predominantly employed for synthesizing magnetic biochar nanocomposites, reflecting its prevalence in 100% of cases for this specific application. By offering a critical evaluation of the current state of knowledge and discussing the challenges and future directions for research in this field, this review can help researchers and practitioners better understand the potential of magnetic biochar nanocomposites for enhancing anaerobic digestion performance and ultimately advancing sustainable waste management and renewable energy production.

Graphical Abstract

Abstract Image

探索磁性纳米材料,重点是厌氧消化中的磁性生物炭:从合成到应用
厌氧消化技术对可持续废物管理和可再生能源非常有效,但却面临着反应速率慢和沼气产量低的挑战。本综述探讨了磁性纳米材料(尤其是磁性生物炭纳米复合材料)通过作为电子导管和提供必要的铁来应对这些挑战的潜力。本综述全面概述了在厌氧消化中将磁性纳米颗粒装入生物炭的应用,并对各种磁性纳米颗粒的合成方法和特性进行了全面讨论,阐明了它们在无磁场和有磁场情况下的作用机制。我们的综述强调,共沉淀(53%)和商业来源的纳米粒子(29%)是主要的合成方法,而化学还原、热解和绿色合成途径较少使用(分别为 8%、5% 和 5%)。值得注意的是,热解法主要用于合成磁性生物炭纳米复合材料,在这一特定应用中,热解法的使用率高达 100%。本综述对当前的知识状况进行了批判性评估,并讨论了该领域的挑战和未来研究方向,有助于研究人员和从业人员更好地了解磁性生物炭纳米复合材料在提高厌氧消化性能方面的潜力,并最终推动可持续废物管理和可再生能源生产。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biochar
Biochar Multiple-
CiteScore
18.60
自引率
10.20%
发文量
61
期刊介绍: Biochar stands as a distinguished academic journal delving into multidisciplinary subjects such as agronomy, environmental science, and materials science. Its pages showcase innovative articles spanning the preparation and processing of biochar, exploring its diverse applications, including but not limited to bioenergy production, biochar-based materials for environmental use, soil enhancement, climate change mitigation, contaminated-environment remediation, water purification, new analytical techniques, life cycle assessment, and crucially, rural and regional development. Biochar publishes various article types, including reviews, original research, rapid reports, commentaries, and perspectives, with the overarching goal of reporting significant research achievements, critical reviews fostering a deeper mechanistic understanding of the science, and facilitating academic exchange to drive scientific and technological development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信