Effects of functional modification on the thermal and mechanical properties of h-BN/epoxy nanocomposites

IF 2.8 4区 工程技术 Q2 POLYMER SCIENCE
Chengdi Xiao, Wenqiang Shu, Zhenguo Xing, Haitao Zhang, Xixin Rao
{"title":"Effects of functional modification on the thermal and mechanical properties of h-BN/epoxy nanocomposites","authors":"Chengdi Xiao,&nbsp;Wenqiang Shu,&nbsp;Zhenguo Xing,&nbsp;Haitao Zhang,&nbsp;Xixin Rao","doi":"10.1007/s13233-024-00275-5","DOIUrl":null,"url":null,"abstract":"<div><p>Continual miniaturization and increased power density of microelectronic devices lead to greater heat generation, necessitating the use of thermal interface materials with superior thermal conductivity to ensure device reliability and safety. This study utilizes non-equilibrium molecular dynamics (NEMD) simulations to investigate the enhancement mechanisms of thermodynamic and mechanical properties in hexagonal boron nitride/epoxy resin (<i>h</i>-BN/EP) composites upon the addition of aliphatic (C<sub>5</sub>H<sub>12</sub>O), covalent (silane coupling agent KH560), and non-covalent (dopamine, DA) functional groups. The results indicate that functionalizing <i>h</i>-BN with these groups significantly enhances the thermal conductivity of the epoxy composites, especially when two types of functional groups are used simultaneously. In particular, composites modified with KH560-treated DA exhibited the highest increase in thermal conductivity, achieving 0.761 W·m<sup>−1</sup>·K<sup>−1</sup> with only 10% vol <i>h</i>-BN filler. Additionally, the dual-modified composites also showed a significant improvement in Young's modulus, reaching 7.908 Gpa, an increase of 26.97% over traditional EP. Vibrational density of states (VDOS) analysis confirmed that the aromatic and covalent structures in the functional groups facilitate thermal dissipation. This study offers critical theoretical insights into the improved heat transfer and filler-interface interactions in functionalized <i>h</i>-BN/EP composites, providing a foundation for developing high-performance thermal management materials in advanced electronic systems.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div><div><p>Comparison of thermal and mechanical properties of epoxy resin composites after functional group modification</p></div></div></figure></div></div>","PeriodicalId":688,"journal":{"name":"Macromolecular Research","volume":"32 9","pages":"911 - 927"},"PeriodicalIF":2.8000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Research","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13233-024-00275-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Continual miniaturization and increased power density of microelectronic devices lead to greater heat generation, necessitating the use of thermal interface materials with superior thermal conductivity to ensure device reliability and safety. This study utilizes non-equilibrium molecular dynamics (NEMD) simulations to investigate the enhancement mechanisms of thermodynamic and mechanical properties in hexagonal boron nitride/epoxy resin (h-BN/EP) composites upon the addition of aliphatic (C5H12O), covalent (silane coupling agent KH560), and non-covalent (dopamine, DA) functional groups. The results indicate that functionalizing h-BN with these groups significantly enhances the thermal conductivity of the epoxy composites, especially when two types of functional groups are used simultaneously. In particular, composites modified with KH560-treated DA exhibited the highest increase in thermal conductivity, achieving 0.761 W·m−1·K−1 with only 10% vol h-BN filler. Additionally, the dual-modified composites also showed a significant improvement in Young's modulus, reaching 7.908 Gpa, an increase of 26.97% over traditional EP. Vibrational density of states (VDOS) analysis confirmed that the aromatic and covalent structures in the functional groups facilitate thermal dissipation. This study offers critical theoretical insights into the improved heat transfer and filler-interface interactions in functionalized h-BN/EP composites, providing a foundation for developing high-performance thermal management materials in advanced electronic systems.

Graphical abstract

Comparison of thermal and mechanical properties of epoxy resin composites after functional group modification

Abstract Image

功能修饰对 h-BN/epoxy 纳米复合材料热性能和机械性能的影响
微电子器件的不断微型化和功率密度的增加导致发热量增大,因此有必要使用导热性能优异的热界面材料,以确保器件的可靠性和安全性。本研究利用非平衡分子动力学(NEMD)模拟研究了添加脂肪族(C5H12O)、共价(硅烷偶联剂 KH560)和非共价(多巴胺 DA)官能团后,六方氮化硼/环氧树脂(h-BN/EP)复合材料热力学和机械性能的增强机制。结果表明,用这些官能团对 h-BN 进行官能化可显著提高环氧树脂复合材料的导热性,尤其是同时使用两种官能团时。其中,用 KH560 处理过的 DA 对复合材料进行改性后,热导率的提高幅度最大,仅用 10% 体积的 h-BN 填料就能达到 0.761 W-m-1-K-1。此外,双重改性复合材料的杨氏模量也有显著提高,达到了 7.908 Gpa,比传统 EP 提高了 26.97%。振动状态密度(VDOS)分析证实,官能团中的芳香族和共价结构有助于热耗散。这项研究为功能化 h-BN/EP 复合材料改善传热和填料-表面相互作用提供了重要的理论见解,为开发先进电子系统中的高性能热管理材料奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Macromolecular Research
Macromolecular Research 工程技术-高分子科学
CiteScore
4.70
自引率
8.30%
发文量
100
审稿时长
1.3 months
期刊介绍: Original research on all aspects of polymer science, engineering and technology, including nanotechnology Presents original research articles on all aspects of polymer science, engineering and technology Coverage extends to such topics as nanotechnology, biotechnology and information technology The English-language journal of the Polymer Society of Korea Macromolecular Research is a scientific journal published monthly by the Polymer Society of Korea. Macromolecular Research publishes original researches on all aspects of polymer science, engineering, and technology as well as new emerging technologies using polymeric materials including nanotechnology, biotechnology, and information technology in forms of Articles, Communications, Notes, Reviews, and Feature articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信