{"title":"A novel approach for assessment of seismic induced liquefaction susceptibility of soil","authors":"Divesh Ranjan Kumar, Pijush Samui, Avijit Burman, Rahul Biswas, Sai Vanapalli","doi":"10.1007/s12040-024-02341-z","DOIUrl":null,"url":null,"abstract":"<p>Liquefaction is one of the natural hazards that occurs due to earthquakes and has a significant impact on the loss of human lives and various civil infrastructures. In this study, metaheuristic ANN with optimization techniques (i.e., ANN-GWO, ANN-GTO, ANN-GAO, ANN-HHO, ANN-SSA, and ANN-SMA), machine learning techniques are used to predict the probability of liquefaction (<span>\\({P}_{L}\\)</span>) from the SPT-based dataset. A dataset of 834 case histories, including seven geotechnical and seismic parameters, was used for training and testing different metaheuristic algorithms. The performance of the proposed machine learning algorithm used at every stage of analysis includes statistical parameters evaluation, score analysis, actual <i>vs.</i> predicted curve, error matrix, Taylor diagram, OBJ criteria, DDR criteria, and AIC criteria. The ANN-GTO model has been found to be the best model for the prediction of the probability of liquefaction potential of soil. However, all proposed models can successfully predict the liquefaction potential of soil with reasonably good accuracy. The proposed models can be used as a key tool in the prediction of the liquefaction susceptibility of any soil deposit.</p>","PeriodicalId":15609,"journal":{"name":"Journal of Earth System Science","volume":"115 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Earth System Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s12040-024-02341-z","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Liquefaction is one of the natural hazards that occurs due to earthquakes and has a significant impact on the loss of human lives and various civil infrastructures. In this study, metaheuristic ANN with optimization techniques (i.e., ANN-GWO, ANN-GTO, ANN-GAO, ANN-HHO, ANN-SSA, and ANN-SMA), machine learning techniques are used to predict the probability of liquefaction (\({P}_{L}\)) from the SPT-based dataset. A dataset of 834 case histories, including seven geotechnical and seismic parameters, was used for training and testing different metaheuristic algorithms. The performance of the proposed machine learning algorithm used at every stage of analysis includes statistical parameters evaluation, score analysis, actual vs. predicted curve, error matrix, Taylor diagram, OBJ criteria, DDR criteria, and AIC criteria. The ANN-GTO model has been found to be the best model for the prediction of the probability of liquefaction potential of soil. However, all proposed models can successfully predict the liquefaction potential of soil with reasonably good accuracy. The proposed models can be used as a key tool in the prediction of the liquefaction susceptibility of any soil deposit.
期刊介绍:
The Journal of Earth System Science, an International Journal, was earlier a part of the Proceedings of the Indian Academy of Sciences – Section A begun in 1934, and later split in 1978 into theme journals. This journal was published as Proceedings – Earth and Planetary Sciences since 1978, and in 2005 was renamed ‘Journal of Earth System Science’.
The journal is highly inter-disciplinary and publishes scholarly research – new data, ideas, and conceptual advances – in Earth System Science. The focus is on the evolution of the Earth as a system: manuscripts describing changes of anthropogenic origin in a limited region are not considered unless they go beyond describing the changes to include an analysis of earth-system processes. The journal''s scope includes the solid earth (geosphere), the atmosphere, the hydrosphere (including cryosphere), and the biosphere; it also addresses related aspects of planetary and space sciences. Contributions pertaining to the Indian sub- continent and the surrounding Indian-Ocean region are particularly welcome. Given that a large number of manuscripts report either observations or model results for a limited domain, manuscripts intended for publication in JESS are expected to fulfill at least one of the following three criteria.
The data should be of relevance and should be of statistically significant size and from a region from where such data are sparse. If the data are from a well-sampled region, the data size should be considerable and advance our knowledge of the region.
A model study is carried out to explain observations reported either in the same manuscript or in the literature.
The analysis, whether of data or with models, is novel and the inferences advance the current knowledge.