S. Muhammad Ahmed Hassan Shah, Muhammad Qasim Khan, Atif Rizwan, Sana Ullah Jan, Nagwan Abdel Samee, Mona M. Jamjoom
{"title":"Computer-aided diagnosis of Alzheimer’s disease and neurocognitive disorders with multimodal Bi-Vision Transformer (BiViT)","authors":"S. Muhammad Ahmed Hassan Shah, Muhammad Qasim Khan, Atif Rizwan, Sana Ullah Jan, Nagwan Abdel Samee, Mona M. Jamjoom","doi":"10.1007/s10044-024-01297-6","DOIUrl":null,"url":null,"abstract":"<p>Cognitive disorders affect various cognitive functions that can have a substantial impact on individual’s daily life. Alzheimer’s disease (AD) is one of such well-known cognitive disorders. Early detection and treatment of cognitive diseases using artificial intelligence can help contain them. However, the complex spatial relationships and long-range dependencies found in medical imaging data present challenges in achieving the objective. Moreover, for a few years, the application of transformers in imaging has emerged as a promising area of research. A reason can be transformer’s impressive capabilities of tackling spatial relationships and long-range dependency challenges in two ways, i.e., (1) using their self-attention mechanism to generate comprehensive features, and (2) capture complex patterns by incorporating global context and long-range dependencies. In this work, a Bi-Vision Transformer (BiViT) architecture is proposed for classifying different stages of AD, and multiple types of cognitive disorders from 2-dimensional MRI imaging data. More specifically, the transformer is composed of two novel modules, namely Mutual Latent Fusion (MLF) and Parallel Coupled Encoding Strategy (PCES), for effective feature learning. Two different datasets have been used to evaluate the performance of proposed BiViT-based architecture. The first dataset contain several classes such as mild or moderate demented stages of the AD. The other dataset is composed of samples from patients with AD and different cognitive disorders such as mild, early, or moderate impairments. For comprehensive comparison, a multiple transfer learning algorithm and a deep autoencoder have been each trained on both datasets. The results show that the proposed BiViT-based model achieves an accuracy of 96.38% on the AD dataset. However, when applied to cognitive disease data, the accuracy slightly decreases below 96% which can be resulted due to smaller amount of data and imbalance in data distribution. Nevertheless, given the results, it can be hypothesized that the proposed algorithm can perform better if the imbalanced distribution and limited availability problems in data can be addressed.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":54639,"journal":{"name":"Pattern Analysis and Applications","volume":"60 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Analysis and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10044-024-01297-6","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Cognitive disorders affect various cognitive functions that can have a substantial impact on individual’s daily life. Alzheimer’s disease (AD) is one of such well-known cognitive disorders. Early detection and treatment of cognitive diseases using artificial intelligence can help contain them. However, the complex spatial relationships and long-range dependencies found in medical imaging data present challenges in achieving the objective. Moreover, for a few years, the application of transformers in imaging has emerged as a promising area of research. A reason can be transformer’s impressive capabilities of tackling spatial relationships and long-range dependency challenges in two ways, i.e., (1) using their self-attention mechanism to generate comprehensive features, and (2) capture complex patterns by incorporating global context and long-range dependencies. In this work, a Bi-Vision Transformer (BiViT) architecture is proposed for classifying different stages of AD, and multiple types of cognitive disorders from 2-dimensional MRI imaging data. More specifically, the transformer is composed of two novel modules, namely Mutual Latent Fusion (MLF) and Parallel Coupled Encoding Strategy (PCES), for effective feature learning. Two different datasets have been used to evaluate the performance of proposed BiViT-based architecture. The first dataset contain several classes such as mild or moderate demented stages of the AD. The other dataset is composed of samples from patients with AD and different cognitive disorders such as mild, early, or moderate impairments. For comprehensive comparison, a multiple transfer learning algorithm and a deep autoencoder have been each trained on both datasets. The results show that the proposed BiViT-based model achieves an accuracy of 96.38% on the AD dataset. However, when applied to cognitive disease data, the accuracy slightly decreases below 96% which can be resulted due to smaller amount of data and imbalance in data distribution. Nevertheless, given the results, it can be hypothesized that the proposed algorithm can perform better if the imbalanced distribution and limited availability problems in data can be addressed.
期刊介绍:
The journal publishes high quality articles in areas of fundamental research in intelligent pattern analysis and applications in computer science and engineering. It aims to provide a forum for original research which describes novel pattern analysis techniques and industrial applications of the current technology. In addition, the journal will also publish articles on pattern analysis applications in medical imaging. The journal solicits articles that detail new technology and methods for pattern recognition and analysis in applied domains including, but not limited to, computer vision and image processing, speech analysis, robotics, multimedia, document analysis, character recognition, knowledge engineering for pattern recognition, fractal analysis, and intelligent control. The journal publishes articles on the use of advanced pattern recognition and analysis methods including statistical techniques, neural networks, genetic algorithms, fuzzy pattern recognition, machine learning, and hardware implementations which are either relevant to the development of pattern analysis as a research area or detail novel pattern analysis applications. Papers proposing new classifier systems or their development, pattern analysis systems for real-time applications, fuzzy and temporal pattern recognition and uncertainty management in applied pattern recognition are particularly solicited.