James P. Barnard, Jianan Shen, Benson Kunhung Tsai, Yizhi Zhang, Max R. Chhabra, Ke Xu, Xinghang Zhang, Raktim Sarma, Aleem Siddiqui, Haiyan Wang
{"title":"Large Area Transfer of Bismuth-Based Layered Oxide Thin Films Using a Flexible Polymer Transfer Method","authors":"James P. Barnard, Jianan Shen, Benson Kunhung Tsai, Yizhi Zhang, Max R. Chhabra, Ke Xu, Xinghang Zhang, Raktim Sarma, Aleem Siddiqui, Haiyan Wang","doi":"10.1002/smsc.202400114","DOIUrl":null,"url":null,"abstract":"Magnetic and ferroelectric oxide thin films have long been studied for their applications in electronics, optics, and sensors. The properties of these oxide thin films are highly dependent on the film growth quality and conditions. To maximize the film quality, epitaxial oxide thin films are frequently grown on single-crystal oxide substrates such as strontium titanate (SrTiO<sub>3</sub>) and lanthanum aluminate (LaAlO<sub>3</sub>) to satisfy lattice matching and minimize defect formation. However, these single-crystal oxide substrates cannot readily be used in practical applications due to their high cost, limited availability, and small wafer sizes. One leading solution to this challenge is film transfer. In this demonstration, a material from a new class of multiferroic oxides is selected, namely bismuth-based layered oxides, for the transfer. A water-soluble sacrificial layer of Sr<sub>3</sub>Al<sub>2</sub>O<sub>6</sub> is inserted between the oxide substrate and the film, enabling the release of the film from the original substrate onto a polymer support layer. The films are transferred onto new substrates of silicon and lithium niobate (LiNbO<sub>3</sub>) and the polymer layer is removed. These substrates allow for the future design of electronic and optical devices as well as sensors using this new group of multiferroic layered oxide films.","PeriodicalId":29791,"journal":{"name":"Small Science","volume":"72 1","pages":""},"PeriodicalIF":11.1000,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/smsc.202400114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Magnetic and ferroelectric oxide thin films have long been studied for their applications in electronics, optics, and sensors. The properties of these oxide thin films are highly dependent on the film growth quality and conditions. To maximize the film quality, epitaxial oxide thin films are frequently grown on single-crystal oxide substrates such as strontium titanate (SrTiO3) and lanthanum aluminate (LaAlO3) to satisfy lattice matching and minimize defect formation. However, these single-crystal oxide substrates cannot readily be used in practical applications due to their high cost, limited availability, and small wafer sizes. One leading solution to this challenge is film transfer. In this demonstration, a material from a new class of multiferroic oxides is selected, namely bismuth-based layered oxides, for the transfer. A water-soluble sacrificial layer of Sr3Al2O6 is inserted between the oxide substrate and the film, enabling the release of the film from the original substrate onto a polymer support layer. The films are transferred onto new substrates of silicon and lithium niobate (LiNbO3) and the polymer layer is removed. These substrates allow for the future design of electronic and optical devices as well as sensors using this new group of multiferroic layered oxide films.
期刊介绍:
Small Science is a premium multidisciplinary open access journal dedicated to publishing impactful research from all areas of nanoscience and nanotechnology. It features interdisciplinary original research and focused review articles on relevant topics. The journal covers design, characterization, mechanism, technology, and application of micro-/nanoscale structures and systems in various fields including physics, chemistry, materials science, engineering, environmental science, life science, biology, and medicine. It welcomes innovative interdisciplinary research and its readership includes professionals from academia and industry in fields such as chemistry, physics, materials science, biology, engineering, and environmental and analytical science. Small Science is indexed and abstracted in CAS, DOAJ, Clarivate Analytics, ProQuest Central, Publicly Available Content Database, Science Database, SCOPUS, and Web of Science.