Matthew D. Dickers, Gennady B. Sushko, Andrei V. Korol, Nigel J. Mason, Felipe Fantuzzi, Andrey V. Solov’yov
{"title":"Dopant concentration effects on Si\\(_{1-x}\\)Ge\\(_{x}\\) crystals for emerging light-source technologies: a molecular dynamics study","authors":"Matthew D. Dickers, Gennady B. Sushko, Andrei V. Korol, Nigel J. Mason, Felipe Fantuzzi, Andrey V. Solov’yov","doi":"10.1140/epjd/s10053-024-00870-2","DOIUrl":null,"url":null,"abstract":"<p>In this study, we conduct atomistic-level molecular dynamics simulations on fixed-sized silicon-germanium (Si<span>\\(_{1-x}\\)</span>Ge<span>\\(_{x}\\)</span>) crystals to elucidate the effects of dopant concentration on the crystalline inter-planar distances. Our calculations consider a range of Ge dopant concentrations between pure Si (0%) and 15%, and for both the optimised system state and a temperature of 300K. We observe a linear relationship between Ge concentration and inter-planar distance and lattice constant, in line with the approximation of Vegard’s Law, and other experimental and computational results. These findings will be employed in conjunction with future studies to establish precise tolerances for use in crystal growth, crucial for the manufacture of crystals intended for emerging gamma-ray crystal-based light source technologies.</p>","PeriodicalId":789,"journal":{"name":"The European Physical Journal D","volume":"78 6","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjd/s10053-024-00870-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal D","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjd/s10053-024-00870-2","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we conduct atomistic-level molecular dynamics simulations on fixed-sized silicon-germanium (Si\(_{1-x}\)Ge\(_{x}\)) crystals to elucidate the effects of dopant concentration on the crystalline inter-planar distances. Our calculations consider a range of Ge dopant concentrations between pure Si (0%) and 15%, and for both the optimised system state and a temperature of 300K. We observe a linear relationship between Ge concentration and inter-planar distance and lattice constant, in line with the approximation of Vegard’s Law, and other experimental and computational results. These findings will be employed in conjunction with future studies to establish precise tolerances for use in crystal growth, crucial for the manufacture of crystals intended for emerging gamma-ray crystal-based light source technologies.
期刊介绍:
The European Physical Journal D (EPJ D) presents new and original research results in:
Atomic Physics;
Molecular Physics and Chemical Physics;
Atomic and Molecular Collisions;
Clusters and Nanostructures;
Plasma Physics;
Laser Cooling and Quantum Gas;
Nonlinear Dynamics;
Optical Physics;
Quantum Optics and Quantum Information;
Ultraintense and Ultrashort Laser Fields.
The range of topics covered in these areas is extensive, from Molecular Interaction and Reactivity to Spectroscopy and Thermodynamics of Clusters, from Atomic Optics to Bose-Einstein Condensation to Femtochemistry.