{"title":"Occurrence and possible sources of antibiotic resistance genes in seawater of the South China Sea","authors":"Jian Lu, Jun Wu, Cui Zhang, Jianhua Wang, Xia He","doi":"10.1007/s11783-024-1868-4","DOIUrl":null,"url":null,"abstract":"<p>Antibiotic resistance genes (ARGs) might have great effect on ecological security and human health. Oceans are important reservoirs that receive tremendous amounts of pollutants globally. However, information on the proliferation of ARGs in seawater is still limited. This study performed field sampling to investigate the occurrence and distribution of ARGs in seawater of the South China Sea, which is the deepest and largest sea in China. The results showed that the total absolute abundances of ARGs in seawater samples ranged from 2.1 × 10<sup>3</sup> to 2.3 × 10<sup>4</sup> copies/mL, with an of 5.0 × 10<sup>3</sup> copies/mL and a range of 2.2 × 10<sup>3</sup>–1.8 × 10<sup>4</sup> copies/mL for those with mobile genetic elements (MGEs). Genes resistant to multidrug, aminoglycoside, tetracycline, and fluoroquinolone antibiotics accounted for 77.3%–88.6% of total ARGs in seawater. Proteobacteria and Cyanobacteria represented 32.1%–56.2% and 30.4%–49.5% of microbial community, respectively. <i>Prochlorococcus</i>_MIT9313 and <i>Clade_la</i> were the prevalent genera in seawater of the South China Sea. Complex co-occurrence relationship existed among ARGs, MGEs, and bacteria. Anthropogenic activities had critical influence on ARGs and MGEs. Hospital wastewater, wastewater treatment plant effluent, sewage, aquaculture tailwater, and runoff were determined as the important sources of ARGs in seawater of the South China Sea based on positive matrix factorization analysis.\n</p>","PeriodicalId":12720,"journal":{"name":"Frontiers of Environmental Science & Engineering","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Environmental Science & Engineering","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11783-024-1868-4","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Antibiotic resistance genes (ARGs) might have great effect on ecological security and human health. Oceans are important reservoirs that receive tremendous amounts of pollutants globally. However, information on the proliferation of ARGs in seawater is still limited. This study performed field sampling to investigate the occurrence and distribution of ARGs in seawater of the South China Sea, which is the deepest and largest sea in China. The results showed that the total absolute abundances of ARGs in seawater samples ranged from 2.1 × 103 to 2.3 × 104 copies/mL, with an of 5.0 × 103 copies/mL and a range of 2.2 × 103–1.8 × 104 copies/mL for those with mobile genetic elements (MGEs). Genes resistant to multidrug, aminoglycoside, tetracycline, and fluoroquinolone antibiotics accounted for 77.3%–88.6% of total ARGs in seawater. Proteobacteria and Cyanobacteria represented 32.1%–56.2% and 30.4%–49.5% of microbial community, respectively. Prochlorococcus_MIT9313 and Clade_la were the prevalent genera in seawater of the South China Sea. Complex co-occurrence relationship existed among ARGs, MGEs, and bacteria. Anthropogenic activities had critical influence on ARGs and MGEs. Hospital wastewater, wastewater treatment plant effluent, sewage, aquaculture tailwater, and runoff were determined as the important sources of ARGs in seawater of the South China Sea based on positive matrix factorization analysis.
期刊介绍:
Frontiers of Environmental Science & Engineering (FESE) is an international journal for researchers interested in a wide range of environmental disciplines. The journal''s aim is to advance and disseminate knowledge in all main branches of environmental science & engineering. The journal emphasizes papers in developing fields, as well as papers showing the interaction between environmental disciplines and other disciplines.
FESE is a bi-monthly journal. Its peer-reviewed contents consist of a broad blend of reviews, research papers, policy analyses, short communications, and opinions. Nonscheduled “special issue” and "hot topic", including a review article followed by a couple of related research articles, are organized to publish novel contributions and breaking results on all aspects of environmental field.