Thermotolerant plant growth-promoting bacteria enhance growth and nutrient uptake of lettuce under heat stress conditions by altering stomatal movement and chlorophyll fluorescence
Tsz Hei Chan, Hiran Anjana Ariyawansa, Hyungmin Rho
{"title":"Thermotolerant plant growth-promoting bacteria enhance growth and nutrient uptake of lettuce under heat stress conditions by altering stomatal movement and chlorophyll fluorescence","authors":"Tsz Hei Chan, Hiran Anjana Ariyawansa, Hyungmin Rho","doi":"10.1007/s12298-024-01470-5","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the effects of selected PGPB on lettuce growth performance under heat-stress conditions. Bacterial plant growth-promoting potentials have been characterized and identified successfully in ongoing studies. Based on in vitro plant growth-promoting potential, the top five bacteria were ranked and identified as <i>Acinetobacter</i> sp. GRB12, <i>Bacillus</i> sp. GFB04, <i>Klebsiella</i> sp. LFB06, <i>Klebsiella</i> sp. GRB10, and <i>Klebsiella</i> sp. GRB04. They were mixed to inoculate on lettuce (<i>Lactuca sativa</i> L.) in temperature-controlled greenhouses. Another in-vivo chamber experiment was conducted by using <i>Bacillus</i> sp. GFB04 and <i>Klebsiella</i> sp. GFB10. Plant physiological traits (chlorophyll fluorescence and transpiration) and nutrient contents were measured at harvest, along with growth, development, and yield component analyses. Uninoculated plants under heat-stress condition showed poor growth performance. In contrast, plants with PGPB inoculation showed improved growth under heat-stress conditions, as the uptake of nutrients was facilitated by the symbionts. Inoculation also improved lettuce photosystem II efficiency and decreased total water use under heat stress. In conclusion, the current study suggests that PGPB inoculation successfully enhances lettuce heat-tolerance. PGPB application could potentially help improve sustainable production of lettuce with less fertilization under increasing temperatures.</p>","PeriodicalId":20148,"journal":{"name":"Physiology and Molecular Biology of Plants","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiology and Molecular Biology of Plants","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12298-024-01470-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the effects of selected PGPB on lettuce growth performance under heat-stress conditions. Bacterial plant growth-promoting potentials have been characterized and identified successfully in ongoing studies. Based on in vitro plant growth-promoting potential, the top five bacteria were ranked and identified as Acinetobacter sp. GRB12, Bacillus sp. GFB04, Klebsiella sp. LFB06, Klebsiella sp. GRB10, and Klebsiella sp. GRB04. They were mixed to inoculate on lettuce (Lactuca sativa L.) in temperature-controlled greenhouses. Another in-vivo chamber experiment was conducted by using Bacillus sp. GFB04 and Klebsiella sp. GFB10. Plant physiological traits (chlorophyll fluorescence and transpiration) and nutrient contents were measured at harvest, along with growth, development, and yield component analyses. Uninoculated plants under heat-stress condition showed poor growth performance. In contrast, plants with PGPB inoculation showed improved growth under heat-stress conditions, as the uptake of nutrients was facilitated by the symbionts. Inoculation also improved lettuce photosystem II efficiency and decreased total water use under heat stress. In conclusion, the current study suggests that PGPB inoculation successfully enhances lettuce heat-tolerance. PGPB application could potentially help improve sustainable production of lettuce with less fertilization under increasing temperatures.
期刊介绍:
Founded in 1995, Physiology and Molecular Biology of Plants (PMBP) is a peer reviewed monthly journal co-published by Springer Nature. It contains research and review articles, short communications, commentaries, book reviews etc., in all areas of functional plant biology including, but not limited to plant physiology, biochemistry, molecular genetics, molecular pathology, biophysics, cell and molecular biology, genetics, genomics and bioinformatics. Its integrated and interdisciplinary approach reflects the global growth trajectories in functional plant biology, attracting authors/editors/reviewers from over 98 countries.