{"title":"Application of ZrO2-ZSM-5 catalyzed soybean oil epoxidation enhanced by hydraulic cavitation","authors":"Gao Ming, Simin Mo, Qianwei Cheng, Luli Meng, Yuan Cheng","doi":"10.1007/s11164-024-05323-4","DOIUrl":null,"url":null,"abstract":"<div><p>To better apply solid acid catalysts for hydraulic cavitation technology, a ZrO<sub>2</sub>-ZSM-5 solid acid catalyst was prepared using impregnation and ion-exchange methods. The effects of the catalyst, hydrogen peroxide, and formic acid dosages, reaction temperature, and venturi tube type on the epoxidation of soybean oil were investigated. The appropriate reaction conditions were determined through a series of experiments: n(C = C):n(HCOOH) = 1:3.0, n(C = C):n(H<sub>2</sub>O<sub>2</sub>) = 1:2.2, reaction temperature 70 °C, catalyst dosage 1 wt%, and the reaction time 3 h. The epoxy value of the optimized product reached 6.19%. After the reaction, the catalyst was recovered, and catalyst-related mechanisms were hypothesized in conjunction with related analyses. A catalytic mechanism is proposed, and an explanation is provided on how the catalyst accelerates the reaction process. It was concluded that the catalyst can be effectively applied to the epoxidation reaction under the action of hydraulic cavitation, and the reaction rate can be effectively improved.</p></div>","PeriodicalId":753,"journal":{"name":"Research on Chemical Intermediates","volume":"50 8","pages":"3843 - 3867"},"PeriodicalIF":2.8000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research on Chemical Intermediates","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11164-024-05323-4","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
To better apply solid acid catalysts for hydraulic cavitation technology, a ZrO2-ZSM-5 solid acid catalyst was prepared using impregnation and ion-exchange methods. The effects of the catalyst, hydrogen peroxide, and formic acid dosages, reaction temperature, and venturi tube type on the epoxidation of soybean oil were investigated. The appropriate reaction conditions were determined through a series of experiments: n(C = C):n(HCOOH) = 1:3.0, n(C = C):n(H2O2) = 1:2.2, reaction temperature 70 °C, catalyst dosage 1 wt%, and the reaction time 3 h. The epoxy value of the optimized product reached 6.19%. After the reaction, the catalyst was recovered, and catalyst-related mechanisms were hypothesized in conjunction with related analyses. A catalytic mechanism is proposed, and an explanation is provided on how the catalyst accelerates the reaction process. It was concluded that the catalyst can be effectively applied to the epoxidation reaction under the action of hydraulic cavitation, and the reaction rate can be effectively improved.
期刊介绍:
Research on Chemical Intermediates publishes current research articles and concise dynamic reviews on the properties, structures and reactivities of intermediate species in all the various domains of chemistry.
The journal also contains articles in related disciplines such as spectroscopy, molecular biology and biochemistry, atmospheric and environmental sciences, catalysis, photochemistry and photophysics. In addition, special issues dedicated to specific topics in the field are regularly published.